Presented buy:
Heunox Corporation

Fort Lauderdale, Florida
Riverside Hotel
February 17-19, 2006

http://wwuw.lassosummit.com

Lasso Summit 2006 — Manual Table of Contents

Contents
e T 2
What is URL Design? A7
Strateqgies for Presenting Dynamic Content with Lasso............. A1g
[Getting the Most from Lasso Studio for Eclipse.......................... A24
Database Handling Through Custom Types..........uuuennecee.. A33
IAJAX Asynchronous JavaScript and XML................ A48
Covering the Basics Roundtable.................................. B67]
KBimplifying your Coding Life with Custom Types....................... B75
Using ImageMagick, Lasso and Passthru................. B81|
Development Tools Roundtable.......................... B8g
How to make sense of your hierarchical content...................... B93
Btructured Dynamic Content Roundtable............uucuuunennee... B10§
ExecuChoice Roundtable Discussion...................... B11Q
HostedStore Roundtable Discussion B111|

Table of Contents — 1

Lasso Summit 2006 — Manual

Summit Schedule

Schedule

Friday, February 17, 2006
4:00 PM - 6:00 PMcoovvvrurmcvurces

6:00 PM - 7:00 PM.....cconvuurivrerunecs
7:00 PM - 8:00 PM....ccccmsuurecuneiunnce
8:00 PM - 10:00 PM.......ccoevureueunnee

Saturday, February 18, 2006
8:00 AM - 8:30 AM.....commevvurnccunnnn.

8:30 AM - 10:00 AMcoovuruuiinnes

10:00 AM - 10:15 AM.....convvuvvrunecen
10:15 AM - 11:45 PM......ccoevvevvvunece.

11:45 PM - 12:30 PM.......coveuevneee.
12:30 PM - 1:45 PM.......ccouevvennene.

1:45 PM - 2:00 PM.....convirirrvrnnecn
2:00 PM - 3:15 PM ...

3:15 PM - 3:45 PM......uvveeennne.
3:45 PM - 5:00 PM.....coevevvunenne.

5:30 PM - 7:30 PM ...

Sunday, February 19, 2006
8:00 AM - 8:30 AM.....ccvmervrererrnnnnn

8:00 AM - 11:00 AM......ccoevureuvunnee
11:00 AM

LPA Members Only Intracoastal Cruise of Fort
Lauderdale

Registration
Keynote Address by OmniPilot

Cocktail Reception

Registration & Working Continental Breakfast

URL Design - Methods to Use Friendly URLs
by Johan Sélve

Morning Break

Strategies for Presenting Dynamic Content with Lasso
by Peter Bethke

Working Lunch

Getting the Most From Lasso Studio for Eclipse
by Tom Wiebe and Kyle Jessup

Short Break

Database Handling Through Custom Types
by Goran Tornquist

Afternoon Break

Dynamic Sites with Lasso and AJAX
by Fletcher Sandbeck

OmniPilot StarBar Reception and Cocktails

Working Continental Breakfast
Roundtable Open Discussions

Lasso Summit 06 Ends

Summit Schedule — 2

800.592.6781
G.com 770.368.4992

Be the master of your domain.

Featuring Lasso web hosting from $9.99

offering:

Enterprise Email

Spam/Virus Protection
on all Email Accounts

Webmail

Custom Configurations
Server Co-location
Professional Stats

Free Support
Lasso/PHP

Do you have ideas about creating a custom on-line presence?

Contact Alex Pilson, alex@flagshiphosting.com for information

and solutions for e-commerce, content management and . .

custom web applications. www.flagshlphostlng.com

THE OFFICIAL

LASSO POCKET PROTECTOR

...spend less time cleaning up after those leaky pens and more time coding!

f P
PION OSSery))
Q YOUR NAME HERE \

< Instructions: <
e Cut on solid lines, fold on dashed lines
e Put TabAin Slot A, Tab B in Slot B

» Add name + put in pocket

e e B

Wear your Lasso Pocket Protector to the Point In Space booth for a special surprise!

())
Poi|<1t fin Space

WWW.POINTINSPACE.COM

Lasso MQS& W fileMaker HostedStore

(800) 664-8610 * (603) 352-3701 * INFO@POINTINSPACE.COM

If you have a custom need--please feel free to contact us
and we will be glad to be of assistance in satisfying your
every need No matter hq;ﬂ_ big or small of a project we are
~ theonestom '_: it happen for you.

Wi

Hoct<]

Store

When writing your own ecommerce solution
from scratch seems like a silly thing to do.

www.hostedstore.com

Lasso Summit 2006 — Manual What is URL Design

What is URL Design?

Johan Sélve

A URL is not a Filename

A URLL is usually tied to a specific filename on the server, but this is not how things are
intended. Usually it’s the server technology that leads us into thinking that a URL maps to a
specific filename, but URLs (or URIs in general) have conceptually nothing to do with a file
system.

http://www.w3.org/TR/chips/

By disconnecting the URL from the server’s file system, we get much more freedom when
choosing URLs. Each URL doesn’t have to correspond to a physical directory or file, and the
URLs we use don’t even need to have a file extension.

Choosing URLs

So what’s a good URL? There is a lot of reading to do on this topic around the web. I've collected
a few recommendations from different sources.

http://www.w3.org/Provider/Style/URI

http://www.useit.com/alertbox/990321.html

http://www.w3.0rg/QA/Tips/uri-choose
A URL should be:

+ Short

Keep URLs short to make them easier to communicate or share.
* Memorable

Make it easier for users to return or remember a URL they’ve read somewhere.
+ Bookmark-able

Avoid session specific info in the host or path part of a URL.
*+ An aid in site navigation

Let the URL reflect the site structure to help the visitor visualize where he is on a site.
* Guess-able

A URL that can be guessed is a great help for visitors.
+ Hackable

Make it possible and easy for users to “hack” the URL for example to move upwards in the
site hierarchy.

+ Persistent = Make it easy for people to link to your site

URLs don’t change: people change them.

What is URL Design — A7

Lasso Summit 2006 — Manual What is URL Design

Let URLs remain forever, do not move pages around.
Avoid causing link-rot.
“Persistent URLs Attract Links, Link-rot equals lost business” (Jacob Nielsen)

If you have to change a URL, either point to the new URL or make it very clear that the
page is gone
Apple - QuitkTime - Downloac
a http / fwww.apple.com/quicktime/doanload/

(‘ | Store] iPod+iTur:t:sY Mac [QuickTime L

~Download — Maovic Tralers QudeT me Cude Why QuickT me Pr

Welcame te Real com

+ @ h.;'_.;_::.:u'::.";ﬂ.'m.rual..r_u ITI.j'I.!llﬂ.‘r.Er.é'.dUM.i.Ddd

00ps...

Feal Guide

Sorry, we can't find the page you were looking f¢

Tha link was eilher ouldelec ur indccurale. Maybe we can help youa find he pa

T rd e - Y T N P S

+ Technology neutral
Avoid file extensions that is dependent of the server architecture.
Security - avoids revealing information that is useful for a hacker,
future proofing - allows changing server architecture without changing any URLs.

+ The acid test — can you read a URL to someone over the phone?

Ways to do URL Mapping With Lasso

Apache mod_rewrite

mod_rewrite is a robust and powerful way to parse and manipulate URLs. However it is
implemented completely outside of Lasso and is dependent of the web server used. It can also be a
bit challenging to master the mod_rewrite rules.

Here isa configuration example that will pass any request for nonexistent files or directories to
index.lasso, passing the requested URL as parameter.

RewriteEngine On

#RewriteBase /

Check to see if the request is a real file or directory
RewriteCond %{REQUEST FILENAME} !-f

RewriteCond %{REQUEST FILENAME} !-d

RewriteCond %{REQUEST FILENAME} !.*/Security

Everything else gets sent to index.lasso

RewriteRule "~ (.*)$ /index.lasso?response filepath=/$1 [QSA,L,NS]

What is URL Design — A8

Lasso Summit 2006 — Manual What is URL Design

IISRewrite and ISAPI_Rewrite for IIS, WebSTAR Rewrite

Similar to mod_rewrite.

Error.lasso

This method uses a custom error.lasso file to parse the requested URL when requesting a non-
existent file. The idea is to have Lasso process requests for non-existent files. However Apache
won’t pass the requested file path to error.lasso, instead the actual path to error.lasso is returned
which makes it impossible to parse the URL that was originally requested. In addition, the
request must end with .lasso for error.lasso to kick in.

Lasso Built-In using [Define_AtBegin]

Lasso 8 introduced the tag [Define_AtBegin] which lets us hook into the processing of any Lasso
page processed by the server. This lets us use Lasso to parse the requested URL before running
the actual page.

How to use Define_Atbegin as Pre-Processor for URL Mapping

Introducing [Define_AtBegin]

[Define_AtBegin] is a tag that defines pre-processing code that will be executed before each page
on a site is executed or even loaded - for EVERY request to Lasso. The atbegin code is defined
globally for each Lasso Site by calling the tag from a lasso file in LassoStartup.

This pre-processing ability gives us a way to analyze the requested URL and map it to a desired
action before loading any page for it.

Since [Define_AtBegin] defines pre-processing code that will be executed for every page on a site,
it is important to debug the code carefully before using it on a live server. Otherwise every page
requested on the site might fail.

Advantages Over Other Methods

Using a Lasso pre-processor to perform URL mapping makes the process mostly self-contained
within Lasso which reduces the complexity of the server setup. Less things to setup, less things
that can fail. The URL parsing logic, decisions about not to get involved with the request, all of
it can be done within Lasso. This also makes it easier to integrate the URL mapping more tightly
with the rest of the site’s logic, or even databases.

Only a minor configuration needs to be done in the web server. With Apache it can even be
configured in a .htaccess file (if allowed on the server) to provide a directory-specific activation.

The pre-processor can also be used for many other useful things.

How does it work?

We intend to use a pre-processor to parse the requested URL before executing the page. The pre-
processor will be defined by a [Define_AtBegin] call. How will the pre-processor interact with
the flow of execution?

What is URL Design — A9

Lasso Summit 2006 — Manual What is URL Design

Let’s begin with looking at what a normal Lasso page request

looks like.
http://www.myweather.com/hamistad/weekend.lasso
+ The web server is configured to send URLs with .lasso
extension to Lasso. Web Server
* The requested URL maps directly to a filename on the web ¥
Server.) /hamlstad/
aseo weekend.lasj

+ Lasso executes the requested page.

This is what a page request can look like when we use a pre-processor to do URL mapping.

+ The web server is configured to send the request to
Lasso even if the requested URL doesn’t have a .lasso

eXtenSion. http://www.myweather.com/hamistad/weekend.lasso

+ The requested URL has nothing to do with the
filesystem on the web server. Web Server

+ Lasso has a pre-processor defined at startup l

(urlhandler_atbegin.lasso) which will call a URL Lasso
handler (urlhandler.inc) to have the requested URL I |

parsed. ™ |
. . . urtai:dlfsr;:tb =1 urlhandler.inc I index.lasso
+ After parsing the URL, urlhandler.inc will execute the i 1|

site’s default page or hub file, passing the parsed URL :

as argument.

Web Server Configuration

The web server should be configured to have Lasso process all requests for URLs that we want to
parse, for example any URL without file extension. We would normally want to exclude files that
have file extension to avoid having Lasso process image files, media files, CSS files, javascript files
and so on. We could also limit processing of requests to specific directories.

Configuration example for Apache, to put in a virtual host configuration or in a .htaccess file:
<LocationMatch "~[~\.]+$">
anywhere without file extensions
SetHandler lasso8-handler
</LocationMatch>

See "Additional Apache configuration examples” below for other setups.

For IIS 6.0 on Windows 2003 Server, you can set up a wildcard mapping for which will direct any request to Lasso on
a folder by folder basis.

See “Installing Wildcard Application Mappings (1IS 6.0)”

http://www.microsoft.com/technet/prodtechnol/WindowsServer2003/Library/IIS/5c5ae5e0-f4f9-44b0-a743-
f4c3a5ff68ec.mspx

Also see “Setting Application Mappings in 11S 6.0 (1IS 6.0)”

http://www.microsoft.com/technet/prodtechnol/WindowsServer2003/Library/I1S/4c840252-fab7-427e-a197-
7facb6649106.mspx

What is URL Design — A10

Lasso Summit 2006 — Manual What is URL Design

Lasso Configuration

We begin with putting a Define_AtBegin script in a .lasso file in the LassoStartup folder for the
current Lasso Site and then restart LassoService for the site.

We want to make the atbegin handler very generic and have as little logic in the actual atbegin-
handler as possible to avoid restarting Lasso when changing the logic for URL mapping. We also
want it to be completely transparent to not interfere with normal operation for virtual hosts on
the same Lasso Site that don’t use URL mapping.

urlhandler_atbegin.lasso

<?LassoScript

define atbegin: {

if: file exists: ‘/urlhandler.inc’;
include: ‘/urlhandler.inc’;

/if;

b

This atbegin handler looks for the file urlhandler.inc in the virtual host’s root and includes this
file to do the actual processing, to either map the URL to an action, pass it on as a normal request
or return an error. By keeping the atbegin handler simple as this, it becomes transparent so that
virtual hosts that do not have urlhandler.inc in the web root are not affected at all by the atbegin
handler.

[Define_AtBegin] use a compound expression to define the pre-processing code. A compound
expression is a LassoScript that is placed between { }. It’s a way to specify a set of Lasso tags that
can be stored and executed later. When [Define_AtBegin] is called at startup, the compound
expression is stored internally by Lasso, and will be retrieved and executed before every page
request.

Handling the URL

Now that we have all Lasso requests for a host passing through one spot, we get the opportunity
to parse the requested URL by looking at [response_filepath]. Now we can do whatever we want
to map the URL to a desired action on the web site.

Here is an example URL handler that will parse URLs for the news and products sections of a
web site:

urlhandler.inc

<?LassoScript
// this file is called by the atbegin handler, so it is executed
// before any page is being processed.
if:response filepath->(endswith:'.lasso') ||
response filepath->(endswith:'.lassoapp');
// don't do anything for normal .lasso and .lassoapp requests
else;
if:response filepath->(beginswith:'/news/"') ||
response filepath->(beginswith:'/products/');
var:'url path'=response filepath, 'section'='';
$url path->(removeleading:'/"');
if:!'$url path->(endswith:'/"');
$url path += '/';
/if;
if:$url path->(beginswith:'news/"');

What is URL Design — A11

Lasso Summit 2006 — Manual What is URL Design

// check for pattern /news/2004/12/31/keyword/
//using regular expression
var:'pathcheck'=(string findregexp:$url path, -find=
"“news/(20\\d{2})/(0[1-9]1|1[0-2])/" + "([~/1+)/([~/1%)");
if:$pathcheck->size >= 5;
$section = 'news’;
var:'newsdate'=$pathcheck->(get:2) + '/' +
$pathcheck->(get:3) + '/' +
$pathcheck->(get:4);
$newsdate = (date:$newsdate, -format='%Y/%m/%d');
var:'newskeyword'=$pathcheck->(get:5);
var:'newsextra'="";

if:$pathcheck->size >= 6;
$newsextra = $pathcheck->(get:6);

/if;
/if;
else:$url path->(beginswith:'products/"');
$section = 'products';

// split up the path in components
$url path = $url path->(split:'/');
/if;
// run site
// use absolute path!

$ HTML REPLY = include:'/index.lasso';
abort;
/if;
/if;
7>

Let’s walk through this code bit by bit:

urlhandler.inc

<?LassoScript
// this file is called by the atbegin handler, so it is executed
// before any page is being processed.
if:response filepath->(endswith:'.lasso') ||
response filepath->(endswith:'.lassoapp');
// don't do anything for normal .lasso and .lassoapp requests

Since .lasso and .lassoapp URLs are always set to be processed by Lasso, those requests will also
get into the pre-processor. But we don’t want to interfere with those request so we will just let
them pass through. We will only deal with extension-less URLSs.
else;
if:response filepath->(beginswith:'/news/') ||
response filepath->(beginswith:'/products/');

The URL path begins with either /news/ or /products/, so we know we should look closer at the
path

var: 'url path'=response filepath,
'section'="'";

We use the variable “section” to keep track of what main section of the site we are visiting. This is
used later on.

What is URL Design — A12

Lasso Summit 2006 — Manual What is URL Design

$url path -> (removeleading: '/');
if: !($url path -> endswith: '/');
$url path += '/';

/if;

Trim the leading / from the path, and add a trailing / if there is none. We don’t deal with paths
that have file extensions here, so we don’t expect to end up with a path like news/current.lasso/.

if: $url path -> (beginswith: 'news/');

// check for pattern /news/2004/12/31/keyword/

//using regular expression

var: 'pathcheck'=(string findregexp: $url path,

-find=""news/(20\\d{2})/(0[1-9]|1[0-2])/"
+ '([0-2]1[1-913[0-11)/" + "([™/1+)/(1™/1%)");

We use a fairly strictly defined pattern for the URL path for news. This breaks the
recommendation for “hackable URLs” since the pattern check doesn’t allow the visitor to hack
off the day or month from the URL, for example if he wants to get to a news archive for a year or
month. We should also add rules to allow a URL like ‘/news/current’ to always return the most
current news article.

[string_findregexp] returns a nicely split array if the path matches our defined pattern.

if: $pathcheck -> size >= 5;
$section = 'news’;
var: 'newsdate'=($pathcheck -> (get: 2))

+ '/' + ($pathcheck -> (get: 3))

+ '/' + ($pathcheck -> (get: 4));
$newsdate = (date: $newsdate, -format='%Y/%m/%d');
var: 'newskeyword'=($pathcheck -> (get: 5)),
var: 'newsextra'='';
if: $pathcheck -> size >= 6;

$newsextra=($pathcheck -> (get: 6));
/if;
/if;

The result of the parsing for a news URL is a few variables:

$section tells the site what main section we are in.

$newsdate contains the publication date that we will use when looking up the news article
in our database.

$newskeyword contains an identification string, usually the news headline in lowercase
and with spaces removed.

$newsextra contains an optional extra item, for example ‘comments’ that will lead to a
page related to the news article.

else: $url path -> beginswith: ‘'products/';
$section = 'products’;

// split up the path in components

$url path = $url path -> (split: '/');

For the ‘products’ section we have much more liberal rules. We will simply pass on the $url_path
variable as array to use later on when looking up the current product category in our product
database.

What is URL Design — A13

Lasso Summit 2006 — Manual What is URL Design

In a real world case we would continue with more rules for different site sections.

/if;

// run site

// use absolute path!

$ HTML REPLY = include: '/index.lasso';
abort;

This is where all the action happens. Index.lasso is the central hub page for the actual site, and
the variables we have set above will be handled in the site code to show the desired page.

Remember, this file is run by the atbegin handler, and the code run by define_atbegin will never
return any output to the web page since Lasso will clear the page buffer once the real page begins
processing. Therefore we must explicitly put the page result into the page buffer, which is stored
in the variable $__html_reply__.

Once we have stored the page output into the page buffer we must also stop any further
processing of the request using the abort tag, otherwise Lasso would try to run the file that was
actually requested, which is probably nonexistent since we use virtual paths in the URL.
/if;
/if;

?>

Error Handling

The entire mechanism for URL mapping relies on the fact that a URL is not a filename. That
means that we can technically never end up in a “File not found” situation, so there’s no natural
mechanism to provide file not found errors.

Nevertheless it’s quite possible to get a request for a URL that is invalid and that doesn’t match
anything relevant in our site. For these situations we need to provide a proper error page and
most importantly a proper HTTP status code, so search engine crawlers, bookmark checkers and
other automated visitors know about the error.

For URLs that are invalid we should serve a “404 Not Found” status code.

For URLSs that have been valid but are no longer available we should serve a “410 Gone” status
code.

http://www.w3.org/Protocols/HTTP/1.1/spec.html#Status-Codes

Here is a custom tag to easily set the HTTP status code without affecting the rest of the HTTP
header:

define tag: ‘setHTTPstatus’, -required='statuscode’;
// replace status code but keep leading HTTP with version
$ http header =
(string replaceregexp: $ http header ,
-find="("HTTP\\S+)\\s+.*?\r\n’,
-replace="\\1 ‘ + #statuscode + ‘\r\n’);
/define tag;

What is URL Design — A14

Lasso Summit 2006 — Manual What is URL Design

Debugging AtBegin Scripts

One common method to debug tricky code problems is to insert the [abort] tag on different
places and look at what has been output on the page before getting to the [abort] tag.

One thing to note about this is that when executing a page by calling it from an AtBegin script
as we do in urlhandler.inc, we can’t use the [abort] for debugging any more. If we put [abort]
anywhere in the Lasso code that is executed in index.lasso, it will result in a completely blank
page. This is because it will stop any further processing

whatsoever which means that the code in urlhandlerinc that assigns s =~ html _reply to the
output of index.lasso will not be executed either. The end result is that putting an [abort] tag
anywhere in index.lasso will result in a completely blank page.

Lasso SiteAdmin settings

Lasso8 Utility Support
Site /
Admin Settings File Extensions Sess0ns Java Irport/ Zxport
Lasso Page Settings File Tags Settings
These Ml ¢ ealensiirs pirg whal pages Lasss vl | eceule neldiogg T s ol wdioones conlral whiel pages Lesso ¢
thraugh UR-s. [Include] ana [b-ary] mgs. zhe [Flle] t2gs, [Imaga] tags, [FOI=...] Zags. am
Lassa Page Extensions e - File Tags Extensions L
inel = .emp

No settings in Lasso SiteAdmin should need to be changed, but apparently it seems to be needed
to add wildcard (.*) as allowed extension in the File Tags Settings under File Extensions. It is not
entirely clear if and why this appears to be needed sometimes.

Additional Apache configuration examples

This configuration will have Lasso process any non-file request (no periods in the URL) only in a
specific folder.
<Location ~ "#/site/["\.]+$">
files without file extensions in specific folder

SetHandler lasso8-handler
</Location>

This configuration will have Lasso process ANY request in a specific folder. This can be useful to

offer protected file downloads, using the [file_stream] tag.
<Location ~ "~/downloads/">
any file in specific folder

SetHandler lasso8-handler
</Location>

Other uses for AtBegin
Methods That Can Be Implemented in Urlhandler.inc

« Protection of .inc files

What is URL Design — A15

Lasso Summit 2006 — Manual What is URL Design

Protecting .inc files from being accessed directly is important to not reveal unprocessed
source code, or run include files out of context. This protection requires that .inc files are
set to be processed by Lasso.

urlhandler.inc

<?LassoScript
if: response filepath -> (endswith: '.inc') ;
// .inc files are not allowed to be called directly

$ HTML REPLY = '<hl>Not authorized</hl>';
abort;
/if;

7>

+ Locking down siteadmin.lassoapp

This code makes it impossible to access siteadmin.lassoapp except from the local computer.

urlhandler.inc

<?LassoScript
// make sure we're ok to use siteadmin
if: response filepath -> split: ‘/’' -> last -> (beginswith: ‘siteadmin.’)
&& response filepath -> (endswith: ‘.lassoapp’)

&& client ip !'= ‘127.0.0.1%;
$ HTML REPLY = ‘<hl>Not authorized</hl>’;
abort;

/if;

7>

Methods That Are Implemented as Separate atBegin Handlers

* Logging and timing (when used in pair with [Define_AtEnd])

<?lassoscript
define_atbegin: {
var: ‘ pagetimerstart’= date msec;
define atend: {
log detail: ‘http://' + server name + response filepath +
+ (_date msec - $ pagetimerstart) + ‘ ms’;

«

};
};

7>

+ Debugging troublesome pages

[Bil Corry] If it were me, I'd create a define_atbegin script that logs every page request to a
database. Then have a define_atend that erases that db entry. The only entries left will be
those that never finished executing.

+ Branding

Use an AtBegin handler install an AtEnd-handler on every page that adds an ISP logo, adds
site information, copyright info or disclaimer as html comment, adds banner ads or other
things by manipulating the s~ ntml _reply ~ _ variable before it is served to the visitor.

+ Optimizing HTML code and collapsing whitespace

Use an AtBegin handler install an AtEnd-handler on every page that removes excess
whitespace and line breaks from the html source.

What is URL Design — A16

Lasso Summit 2006 — Manual What is URL Design

* Gzip compression of served HTML pages

Tip of the week for September 23, 2005 includes a Gzip compression module for Lasso 8.1.
The module allows Lasso to automatically compress all pages using Gzip for compatible
browsers. The full source code for the modules is included and is a good example of how to
create at-begin and at-end processes.

http://www.omnipilot.com/Tip%200f%20the%20Week.1768.8959.lasso

+ Protected downloads with real filenames

Serve a file for download using [file_stream] by reading the original file from outside of
the web root, after checking that the user is authorized to download the file. By passing
requests for ANY file to Lasso, the user can request the file by it’s real name.

*+ Dynamically generated media files with real filenames

Generate pdf or image files on the fly and serve them directly, even if the file is requested by
its real name.

1 URL or URI? In this document we will refer to web addresses with the term “URL”,
but some of the referred links use the more general term “URI”. In short, a URL is one
kind of URI. Here we talk about web addresses, so let’s stick to URL for now.

What is URL Design — A17

Lasso Summit 2006 — Manual Strategies for Presenting Dynamic Content

Strategies for Presenting Dynamic Content with Lasso

Peter D Bethke

“Content is where | expect much of the real money will be made on the Internet, just as it was in
broadcasting.” -- Bill Gates (1/3/96)
(http://www.microsoft.com/billgates/columns/1996essay/essay960103.asp).

1. Introduction:

In the continuing evolution of the Internet as an information and entertainment medium,
the demand for dynamic, audience-driven content has increased dramatically. Moving from
a “static” web site to one that can offer fresh, relevant information takes careful planning and
application of Lasso’s broad and powerful range of web programming tools.

But what is “Dynamic Content” anyway? There seems to be a general agreement that it is the
opposite of “static” content, but from that point the definitions differ. There seems to be a general
agreement that Dynamic Content is a more advanced form of web programming than “static”
html, but in the modern era of complex CSS this too is arguable.

Obviously, deciding to use Dynamic Content takes a careful analysis of the reasons and necessity,
and a careful assessment of the possible drawbacks and/or overhead that may result from it, such
as increased server load or search engine compatibility. Some developers address these issues by
filtering Dynamic Content to select audiences, also called “personalization” or “authenticated site
content”. Others focus on optimization, eking out every last bit of performance from their server.
Many sites combine the two to create the coveted “how did they do that” reaction.

Dynamic Content can take many forms, from textual to graphic. Some is built “on the fly” and
some is delivered pre-built but is considered dynamic due to it’s delivery. Using Lasso’s powerful
PDF and Image tags, it can take the form of generated PDF documents and images. Newer
applications use cutting-edge display technologies such as AJAX to push performance of web
applications to levels found previously only in desktop applications.

Naturally, all Dynamic Content has to “come from somewhere”. Some web applications are based
on content that is generated internally, frequently in concert with a back-end database such as
MySQL, SQLlite, or MS SQL Server. Others aggregate content that is generated elsewhere, using
open standards like SOAP, or using simple included urls or even frame-sets.

Each of these types of applications can be built using technologies that are available to Lasso
programmers. Omnipilot has provided developers with a very powerful and flexible array of tools
to tackle the issue of Dynamic Content. Using Lasso it is possible to serve Dynamic Content in
both textual and binary format (eg images, pdf and other formats) from databases, bypassing

the need to store this information in the application directory. Further, this information can

be optimized and secured using caching and encryption methods, to create truly flexible and
powerful results.

Strategies for Presenting Dynamic Content — A18

Lasso Summit 2006 — Manual Strategies for Presenting Dynamic Content

2, Definitions of Dynamic Content on the Web:

A simple search in Google (enter “define:Dynamic Content” in search box) returns a number of
definitions of “Dynamic Content”. Here are a few that are interesting:

Dynamic Content is:

+ ..web site content that can be altered or updated very easily. (www.c7.ca/glossary/)

+ Information in web pages which changes automatically, based on database or user
information. Search engines will index Dynamic Content in the same way as static content
unless the URL includes a ? mark. However, if the URL does include a ? mark, many search
engines will ignore the URL. (www.dreamweaverresources.com/seo/glossary.htm)

+ Content that is generated on the web pages on the fly. Information gathered from databases
or other sources depending on user request, when displayed on the web page makes the
content dynamic. Pages that are created in Flash or use other animation technique are also
sometimes referred to as dynamic. (www.optymise.co.nz/resources/glossary.asp)

+ Content that is assembled to meet users’ specific needs, providing them with exactly what
they are looking for, when they are looking for it, and in the format they are looking for it
in. (www.managingenterprisecontent.com/myweb/Glossary.htm)

+ Dynamic Content is the ability to have the presentation of information on a web page,
or other services, influenced by other factors. The servers that create the web page run
computer programs that, according to a sequence of decisions, alter the content of the page
in real-time. Dynamic Content could be as simple as putting the current date in a web
page. At its most complex it can identify the person using the page, and personalize the
information presented to the preferences they gave to the server when they registered to
receive that service. (www.fraw.org.uk/library/005/gn-irt/glossary.html).

If there is a common thread with these definitions it might be that Dynamic Content is content
that is presented according to some criteria that is set out by the programmer with some thought
for the intended audience, and that this content is changeable based on the provided criteria.

In this case I like the spirit of the last definition, as it it speaks to the role of the developer, who
through programming can cause a web server to “...according to a sequence of decisions, alter the
content of the page in real-time”. This criteria can be as simple as pointing to an included url or
using the (date) tag to display the current date to something as complex as presenting content in
a specific format at a specific time and place to a specific user at a specific ip range.

Obviously, in the case of the included url or tag, the developer has limited control of the actual
content, aside from choosing the source or parameters, or the format of the output. However,

the content does meet the criteria of being changeable and presented with some thought towards
audience. In the case of the date tag, for example, that thought might be “what is the use of
knowing the current time and date”. In the case of the highly selective, or “personalized” content,
it is easy to make the case that the developer put considerable time into defining the criteria that
influenced its presentation.

Finally, the term “Dynamic Content” itself can be confusing as it can refer to the page itself, or
elements (objects) on the page. When a definition is referring to the difficulties of optimizing
Dynamic Content for search engines, it is primarily talking about the whole page, since search

Strategies for Presenting Dynamic Content — A19

Lasso Summit 2006 — Manual Strategies for Presenting Dynamic Content

engines (in general) index the page as a whole. When it talks about date tags or Flash animation it
is most of the time talking about objects on a page that might be otherwise static.

3. Advantages/Disadvantages of Dynamic Content

Dynamic Content has obvious advantages. The lure of building a web application that can “run
itself” with minimal interaction is great, and is the stuff of many an inticing sales pitch. Bill
Gates once famously said (in 1996) that in the modern internet era, “content is king”. This is
becoming more and more true. Dynamic Content is a vital tool for “visitor retention”, whereby
visitors to a site are encouraged by what they see at first glance to return later or on a regular
basis. Static content is by nature poor at true retention -- while a visitor may return a number
of times to read all the content that they need, eventually they will exhaust that “well” and look
elsewhere. Even worse, a visitor may “snake” (gather via a web tool) a site for offline browsing,
grabbing information, taxing the server, but never actually visiting the site.

The key to visitor retention is to provide information that changes and adapts to time, date,
audience, etc, and forces (with a “velvet glove” of course) viewers to return repeatedly to get the
“latest”, while not appearing limited (or limiting) in any way.

Most times Dynamic Content presented as styled text or a mixture of text and html markup

(ie imbedded images). However, advanced techniques of Dynamic Content can go as far as to
authenticating and delivering binary content “on the fly” for select audiences. This method,
discussed later in this paper, requires a database or an application server that can differentiate
between visitor types (or groups). Once implemented, though, the results can be quite powerful,
as binary content like images, pdfs, word documents etc can be stored as serialized data and
served in a controlled, secure manner that is far more efficient than simply showing or hiding
links to “physical” (ie on-disk) files.

The actual implementation of a solid, dynamically-generated application can be very complex.
A lot of the complexity comes from the creation of the rules that govern the content itself. Once
those rules are created, the code naturally needs to mimic them, and at the same time take into
account scenarios that are infrequent and out of the normal scope, such as malformed urls or
hacking attempts.

As mentioned in one of the previous definitions, Dynamic Content can pose a problem to
indexing services such as Google and Yahoo. Indexing services were first introduced in a time
when “static” html pages were the norm, and cgi-based pages were used primarily for simple
gateway tasks like email forms. In “modern” times entire applications are built with Dynamic
Content -- frequently out of smaller objects that are welded together to create a “rendered” page.
This type of page assembly usually requires a scripting or compiled language of some kind, like
Lasso, Php, .Net, Java etc. These languages by default use extensions like .lasso, .php etc which tip
off the search engine to it’s content.

All of these engines deal with Dynamic Content differently, and SEO (Search Engine
Optimization) is an art entirely to itself. Of course, truly Dynamic Content is antithetical in

a way to the function of the search engine. Because search engines work best with data that
remains fixed, Dynamic Content (such as the top news stories on a news site for example) poses
problems with search engines that crawl the web periodically - an indexed link might be time-
dependent and “vanish” by the time a user accesses it from a search list.

Strategies for Presenting Dynamic Content — A20

Lasso Summit 2006 — Manual Strategies for Presenting Dynamic Content

There is also the question of performance, i.e. the load that certain dynamic elements can place
on a web server. Many application design decisions are based on a delicate balance between
power, complexity and performance. If a web page is made up of multiple Lasso inline “blocks”,
each representing a separate query, the resulting overhead can potentially slow down server and
data source performance, even in a multithreaded environment. A lot of times Dynamic Content
can be optimized by spreading a wider net with an initial query and filtering the results using
arrays, maps and iterations. Further, using the new cache tags, it is possible to cache the results of
complex queries as serialized objects and to call the data when needed, or to refresh and replace it
when it is no longer current. In this way the developer can foresee the demands that certain tasks
may impose and set up routines that minimize those demands.

The bottom line is that no matter how elegant a site may be, if it is too slow it will have difficulty
retaining visitors. This defeats one of the primary reasons for using Dynamic Content, visitor
retention, and can make all the hard work of a developer (and client) go to waste.

4, Types of Dynamic Content

There are two major classes of data being served on the web - textual and binary. Textual data
usually comes in the form of stylized markup, like HTML or a combination of HTML and CSS.
Binary data comes in the form of images, video, PDF, flash animations, etc. Dynamic Content
can be any combination of these elements. It can refer to the page that serves the image or the
image itself - the definition is largely based on context. Again, what makes it dynamic is that
there is some rule or set of rules that governs its appearance, placement and/or accessibility.

Dynamic Content can originate internally, i.e. from a database associated with the application, or
externally, from another server or servers. Internally accessed data is the most common form of
Dynamic Content used by Lasso developers. It is usually generated by a query to a registered data
source, like MySQL, and called by using a named inline or passed to an array either in a raw form
or encapsulated into a CType. However the storage and delivery method, at some point it ends

up on a display page as text or binary content, subject to the rules governing its appearance and
duration.

External referencing and/or presentation of Dynamic Content is sometimes called “Content
Aggregation” or “Portalled” content. Some content providers such as Google provide hooks into
their own system though SOAP (Simple Object Access Protocol), an XML-based “Messaging
Framework”. Unlike frames or even externally included urls, SOAP-generated content can (usage
guidelines permitting) be made to look like it originates internally, complete with formatting,
rules etc (Using the SOAP_DefineTag Lasso ctag introduced in LP8, it is possible to use remote
SOARP services as easily as calling local tags).

Javascript can be used in conjunction with Lasso to create Dynamic Content. Javascript has the
advantage of widespread browser support, and equally important, browser integration. Browser
vendors allow javascript varied levels of access to GUI elements and system information that
cannot be duplicated by Lasso. In addition, Javascript is a very capable scripting language that
can deliver Dynamic Content by itself or in conjunction with Lasso. Similarly Java, which is more
than capable of delivering Dynamic Content, can be integrated with Lasso using the LJAPI (Lasso
Java API) suite.

Strategies for Presenting Dynamic Content — A21

Lasso Summit 2006 — Manual Strategies for Presenting Dynamic Content

Recently there has been increasing buzz the Lasso community about AJAX (Asynchronous
JavaScript and XML). AJAX is not Dynamic Content per se but rather a means to displaying
Dynamic Content, much like traditional html-based tag systems but infinitely more efficient.
AJAX effectively eliminates or greatly reduces one of the major complaints of Dynamic Content,
which is load-time. This can bring web application performance more on par with desktop
applications, which itself is the goal of those like Microsoft who see the future as a massive
distributed system of centrally leased applications tied together by the internet.

AJAX is an amazing technology that is growing in leaps and bounds, and currently it’s only
drawback is compatibility with older browsers. However, as with any technology (like CSS for
example), AJAX will eventually become very widespread if current trends continue, and it will
prove to be a valuable tool in an lasso developer’s toolbox.

5. Examples/Scenarios for using Dynamic Content in Lasso

The simplest application of Dynamic Content would be a Lasso substitution tag, such as [date]
or [server_date]. When placed on a page, this tag will simply indicate the current date as
returned by the server. However, suppose that the developer wanted to vary the date based on
the approximate location of the client who was browsing the site. After all, the date and time in
Charlottesville, Virginia may be useless to someone in Shanghai, China. It is simple enough to
grab the client’s ip address using the [client_ip] tag. From this step there are databases available
that will match ip addresses to physical locations (humorously referred in internet lingo as
“cyberspace to meatspace”).

It’s not an exact science, though. For example, I recently visited one of these services, ip-to-
location.com, which showed that I was located in Florida. A quick check out the window at the
snow on the ground showed that I was not. The service had keyed to the dynamically-assigned
ip address from my provider (Sprint DSL), which probably originates in Florida. However, it did
place me on the east coast in the EST time zone, in the USA. This information could be used in
conjunction with the [date_format] to adjust the time-zone offset, based on the client’s assumed
location and the location of the lasso server. Similarly, one might wish to modify the browser
header to specify the language or character set used to deliver content based on physical location.
This technique can be very inexact due to a variety of factors but it does show one example

of building up from a simple substitution tag to something more complex by mixing various
lasso tags. Lasso provides a nice set of tags that are derived from the client header (which are

all prefixed by “Client_"), such as [client_type], which can tell you the type of browser that the
client may be using. Again, this information can be unreliable but it does provide a starting point
for thinking about how information can be selectively delivered based on the needs of the client.
Google, for example, makes use of location technology to serve ads and to route visitors to its
various language-based portals.

More complex examples involve database interaction. For example, a news-portal site may

keep a table of news stories, each record containing columns for title, author, body, etc. Simply
displaying these records might be considered Dynamic Content. However, adding display date
fields like “start_date” and “end_date” allows the developer to make the display of the content
time-based. If the manager of a news portal wished to display a story onto from January 23rd to
February 18th, s/he could set the start dates and end dates in the record, and then when running
the query compare the value of [date] to these values (formatted of course for the correct data

Strategies for Presenting Dynamic Content — A22

Lasso Summit 2006 — Manual Strategies for Presenting Dynamic Content

source). If the current date fell between the start_date and end_date, the story would appear. If
not, it would not be returned in the row set and thus not displayed to site visitors. In this way, it
is possible for a site to “run itself” in terms of display. The data “front-loading” (i.e. gathering
and entering the records) is obviously still a manual form-based or programatically automated
task. Combined with the previous method of ip-tracking, it might even be feasible to deliver a
combination of time and location-based news stories to site visitors.

Altering site content based on external information (i.e. information gathered from the client
browser, ip address etc) is inherently tricky and often unreliable because the information
originates outside of the application’s sphere of influence. If a site user can be differentiated
internally, subject to rules completely in the control of the developer, the reliability of Dynamic
Content can be greatly increased. Internal differentiation of site visitors is often referred to as
“Authentication”. It usually involves a site user logging in, by applying username and password vs
a table of approved users. The result of this action is that the application can track the actions and
location of the user by matching a url-based session id vs a table of session variables. One of these
session variables is frequently a user key (most likely an integer), which can be matched to the
user record (frequently a primary key field) at any time to get information such as user name, etc.

Once a developer can reliably confirm the identity of a site visitor, s/he can begin to tailor content
based on that visitor’s needs. One type of information stored and frequently used to tailor
content is “site preferences” or “user profile”. Traditionally stored in site cookies, site preferences
and profiles are much more reliably stored in a site database and related to a site user via
authentication. Preferences or profile information may range from age, sex, etc. to geographical
location, areas of interest, and language. Because this information is entered by the user, not
gathered from the user’s browser connection, it can be considered more reliable (assuming the
user is telling the truth). The preference or profile values can then be compared to rules set up
by the developer and included in a query. Say for example the news manager wanted to tailor
information based on age range as well as date, this could be accomplished using preference and/
or profile settings and information if that information had been previously entered by the visitor
and stored.

Many developers find a need to assign site users to groups, instead of relying on user-specific
information. This has two advantages -- first, it means that a developer does not have to rely on
user-provided information to tailor content. It’s a fact of web development, users sometimes lie
or bend the truth when filling in profiles. Second, once a users/groups system is implemented it
is possible to mix and match group assignments to give varying, sometimes overlapping levels of
user access. Obviously, the users/groups system is fundamental to operating systems like Unix
(and MacOSX of course), and is built into Lasso security. However, it is possible for a Lasso
developer to “roll his own” users/groups system to govern site content. Once this is done, it
becomes possible to assign group access to Dynamic Content on the query level.

How might this be accomplished? First, lets assume that the developer has two tables, one for
users and one for groups. The group table includes the group name, description etc, and of course
a primary key which may or may not be the group id. The user table contains first name, last
name etc.

Group assignment can be done one of two ways. Either a user can be assigned to a fixed number
of groups (for example with a group_id column in the user record which corresponds to the

Strategies for Presenting Dynamic Content — A23

Lasso Summit 2006 — Manual Strategies for Presenting Dynamic Content

group id key field in the group table), or a variable number of groups using a related assignment
table. Either way it should be possible for the developer to query either the user table or the
related group assignment table to determine the groups that a user belongs to. Once this is done
these group id’s can be queried against a table of Dynamic Content to determine what content
can be displayed to the visitor.

Determining what content is associated with what group id can be accomplished in a similar
manner. If our developer uses the previously built news story table, with author, title, body etc,
s/he can link news items with groups via a group_id key field (locking the content essentially to
one group) or a related assignment table that associates group_id with news_item_id. The latter
method is much more flexible, as it can make an unlimited amount of associations, which can be
also removed without touching the data in either the group or news content tables.

The end result of this is that content queries are generated based on user group, and thus content
can be tailored to specific groups of site users without having to rely on browser information. If
related tables are used, it becomes possible for developers to create management “back-end” GUI

applications to handle the assignment of the various combinations of user, group and content
id’s.

For example, user “A” might belong to group “A”, through an assignment table that associates

his user id with the group “A” group id. However, the content that he wants to see is currently
associated with Group “B”. When he logs in, he cannot view it because the query that governs
what is displayed only shows that content that he is authenticated to see, and he is not assigned to
a group that can see this data. In order for user “A” to see this content, he must be either 1) added
to group “B”, or 2) the content that he wishes to see must be associated with group “A”. This
demonstrates the flexibility that the developer can provide for the site administrator in showing
or hiding content. If group “B” was a group that required a monthly fee to belong to, this scenario
could easily become the basis for a news site that offered “premium content” to paid subscribers.
Non-paid site users might all belong to group “A”, and “promoting” a user after payment would
be as easy as assigning or associating a new group with his user account/profile.

This can be used with textual output naturally but also with binary content as well. As discussed
previously, binary content can be images, pdf files, word documents etc. If binary content is
stored as a record in a database table, for example a mysql binary field or longtext field, it can be
treated with the same criteria as text output. In other words the same kind of query that matches
a text-based “news story” might also match a record that contained a serialized image or pdf file.
Using the lasso [image] tags, it is then possible to take the serialized information and serve it to
site visitors as an image etc, just as a block of text might be.

The actual tags and code used to serve this image or binary data are more complex than
displaying simple text, but the concept is the same. Once Dynamic Content, be it textual or
binary, is stored in a database, it can be subject to queries that take into account user group
assignments, date ranges, user information, or any number of criteria. Once this is accomplished,
a developer can build the overlapping layers of display criteria that can lead to a truly powerful
application.

One drawback of serving dynamic, binary information is that the overhead can be very taxing
on a server, particularly a database server. It might be able to handle a small amount of users
triggering a query which returns a large stream of binary or serialized text, but if a large

Strategies for Presenting Dynamic Content — A24

Lasso Summit 2006 — Manual Strategies for Presenting Dynamic Content

amount of simultaneous queries hit a server at one time, the result can be a serious slowdown of
performance. This can be helped by query caches (for example the MySQL query cache) if they
are supported, but since the query is specific to the current user, its only helps if that user views
the binary information multiple times (on a page refresh for example), not the group as a whole,
or if the query does not specify the user_id (in which case the query might be cached for a whole
group of users).

One recent addition to the arsenal of Lasso Developers is the [cache] tag, which allows developers
to cache portions of page output. While this can be done a page level, caching can be problematic
if a developer relies on the whole site being dynamic. For example, if a whole page is cached, a
page refresh might not reflect other dynamic changes in the site, like ad banners, etc which can
occur in “real time” with every page refresh or location change.

One solution is to use the [cache_object] tag to cache large binary objects, and to serve these
objects from the cache (possibly stored as a serialize array or map) instead of from the database.
The Lasso cache tags also allow developers to compress cached data into byte stream format, and
to encrypt it as well. The specific methods for this are beyond the scope of this document, which
is intended to be a general overview. However, it is worth using the cache tags, in particular the
[cache_object] tag in situations where database overhead is anticipated. Effective use of these tags
can significantly improve server speed, which of course is one of the primary requirements of
customer retention.

Summary:

In the continuing evolution of the internet, “Content is King”. The ability for a web developer

to deliver fresh, focused content is critical for those types of applications that rely on customer
retention and search engine visibility. There are many strategies for approaching the effective
delivery of Dynamic Content, but most require an understanding of the needs of site visitors, and
the creation of rules that tailor content to these needs. Lasso provides many tools for delivering
Dynamic Content, and it is up to the developer to match the method with the needs of his or her
application. If the needs of the application environment, such as performance, user tracking, and
display criteria, can be effectively balanced against the needs of the client user, the end result can
be extremely powerful.

Strategies for Presenting Dynamic Content — A25

Lasso Summit 2006 — Manual Getting the Most from Lasso Studio for Eclipse

Getting the Most from Lasso Studio for Eclipse

Kyle Jessup & Tom Wiebe

Using the Eclipse IDE

Understanding Eclipse
The Workbench

“The term Workbench refers to the desktop development environment. The Workbench aims to
achieve seamless tool integration and controlled openness by providing a common paradigm for
the creation, management, and navigation of workspace resources.

Each Workbench window contains one or more perspectives. Perspectives contain views and
editors and control what appears in certain menus and tool bars. More than one Workbench
window can exist on the desktop at any given time.”

Workbench

Perspective
Views Editors

Perspectives

“Each Workbench window contains one or more perspectives. A perspective defines the initial
set and layout of views in the Workbench window. Within the window, each perspective shares
the same set of editors. Each perspective provides a set of functionality aimed at accomplishing a
specific type of task or works with specific types of resources. For example, the Java perspective
combines views that you would commonly use while editing Java source files, while the Debug
perspective contains the views that you would use while debugging Java programs. As you work
in the Workbench, you will probably switch perspectives frequently.

Perspectives control what appears in certain menus and toolbars. They define visible action sets,
which you can change to customize a perspective. You can save a perspective that you build in
this manner, making your own custom perspective that you can open again later.

You can set your General preferences to open perspectives in the same window or in a new
window.”

+ Lasso Studio for Eclipse provides the Lasso Perspective

+ Open perspectives from the “Window > Open Perspective...” menu.

Getting the Most from Lasso Studio for Eclipse — A26

Lasso Summit 2006 — Manual Getting the Most from Lasso Studio for Eclipse

View

“Views support editors and provide alternative presentations as well as ways to navigate the
information in your Workbench. For example, the Navigator and other navigation views display
projects and other resources that you are working with.

Views also have their own menus. To open the menu for a view, click the icon at the left end of
the view’s title bar. Some views also have their own toolbars. The actions represented by buttons
on view toolbars only affect the items within that view.

A view might appear by itself, or stacked with other views in a tabbed notebook. You can change
the layout of a perspective by opening and closing views and by docking them in different
positions in the Workbench window.”

+ Also, Fast Views, hidden pop-up views. Handy for seldom used Views.

+ Lasso Studio for Eclipse provides the Lasso Script HTML Result View.

+ Views may be associated with a particular perspective by default but, can generally be
opened in any perspective.

Editor
+ Most perspectives consist of an editor and one or more views

+ Editors can be associated with a particular File type, if there is no associated editor, Eclipse
uses the OS to launch the file in it’s default system editor (i.e. bbedit for CSS files)

* The left margin contains error flags, bookmarks, breakpoints for debugging or todo’s
Project

Repeat 3 times:
Eclipse is not just a text editor
Eclipse is not just a text editor
Eclipse is not just a text editor

+ All your work files must be contained within a project. A lasso project in the case of Lasso
Projects.

* The project defined build settings (i.e. integration with Lasso Developer)

* You can open and close projects to save system resources and ‘Go into’ projects to focus on
only the task at hand in the navigator

Installation and Configuration

Thoroughly covered in the Lasso Studio for Eclipse manual.

The Lasso Perspective
Coding
Lasso Project

Associates the file with the Lasso Builder and enables syntax checking, running and debugging of
lasso files.

Getting the Most from Lasso Studio for Eclipse — A27

Lasso Summit 2006 — Manual Getting the Most from Lasso Studio for Eclipse

Lasso Script File
Just what it sounds like. Default Lasso Script contents can be defined in the “Lasso Studio >
Script File Templates” preference pane. Allows you to add copyright info, SCM keywords or
boilerplate code
The Lassoscript Editor
Syntax Colouring

+ Works for all 3 styles (Square Bracket, Lassoscript and Parenthesis)

+ Even works on a mixture of styles in the same document

* Bracket/Parenthesis highlighting

+ Highlights the following elements:

Tags, Types, Constants

Keywords (attributes)

String Literals (quoted strings)

Numeric Literals (integers and decimals)

Operators (+,-, etc)

Page Variables ($myVariable)

Local Variables (#myLocal)

Comments (Single line // comments or C-style /*...*/ comments

Code Folding
+ Allows you to collapse and expand container tags within your document.

+ Makes it easier to navigate complex pages, collapse all but the block of code you’re working
on.

+ Makes it easy to ensure you've closed all container tags properly, your source file becomes
an outline.

Code Completion

Typing the first few characters of a tag or variable name presents a list of tags found in the
Lasso Reference, or Ctags within your project

+ Typinga $ or # will automatically bring up a list of variable name recommendations.
+ At the top of the list will be Code Templates, discussed below
+ ‘Show Definition’ (F3) will open include files or ctype/ctag definitions
Tool Tips
* Draws info from the Lasso Reference
Also works for Custom Types/Tags using the -Description attribute

Pressing F2 will present an expandable floating window containing the entire description.
You can select and copy text within the description, very handy for copying/adapting
example code into your existing page

Code Templates
« Tab between insert elements

« Able to show available datasources and tables in an inline

Getting the Most from Lasso Studio for Eclipse — A28

Lasso Summit 2006 — Manual Getting the Most from Lasso Studio for Eclipse

Use to help remember the syntax for seldom used/complex tags or ctags

Can be exported to xml format for distribution and sharing

Example Template File

<?xmlversion="1.0"encoding="UTF-8"7>
<templates>
<templateautoinsert="true”context="1lasso”deleted="false”

description="Page Var”enabled="true”id="varl”name="var"”>
var(‘${name}’'=${value})${cursor}</template>

</templates>

Template text will be formatted upon insertion to the current formatting preferences

Caveat: the current version of LSfE (1.5.1) cannot include Svariable style elements in a template definition. i.e.
inline(Sparams, S{database}... will not work, instead, use the long hand form of the variable inline(var(‘params’), S{
databasej...

Code Formatting

Keeps your code neat and tidy.
Helps ensure consistent style across multiple developers.

Lasso has 3 official syntax styles, known commonly as Classic (Square Brackets),
Lassoscript (tag:-property) and Parenthesis tag(-property). The Code formatter can switch
between these styles with the click of a button, allowing the developer to code in the style
most convenient to them and deliver code in the style preferred by their employer/client/
what have you.

Can set indentation preferences, Tab or up to 5 space characters.

Text wrapping to avoid long lines.

quote character preference, single or double quotes.

Maximum plain text length - How long a string will Lasso include in a lassoscript element?

Makes working with Version control systems easier as your code is more consistent.

Outline View

Drag and drop code sections.
Cut and paste code blocks directly in the outline.
Useful for navigating your files, double click on any item to navigate to it/select it.

insert tag/type templates via contextual menu

Custom Tag/Type Template

Provides a simple interface to help create Tags and Types
Easily enter tag name, namespace, descriptio, options, and parameters for your tag or type.
Custom type template allows automatic creation of CallBack tags as well.

Create member tags within a custom type via contextual click on the type name in the
outline.

Getting the Most from Lasso Studio for Eclipse — A29

Lasso Summit 2006 — Manual Getting the Most from Lasso Studio for Eclipse

Automatic Syntax checking and error reporting

Checks document syntax upon document save and marks errors with a red X in the editor
margin along with a notation in the problems window.

Errors will show for all open projects, close other projects to show only relevant errors.

Errors can be filtered by severity, type or resource scope (All Projects, This Project, This
File etc).

Bookmarks and Tasks

Eclipse allows you to set bookmarks in your source files, to facilitate jumping to particular
places in your project quickly and easily

Tasks are useful to note features remaining to implement, code that needs cleaning up or
leave notes for other developers

Create either through right clicking the margin on the line you wish to add the Bookmark/
Task or by simply adding a comment prefixed with “MARK” for bookmarks or “TODO”
for tasks

Better to use the comment method, in case other developers might be editing the project
outside of Eclipse. Also handy to keep as much info within your files as possible

Bookmarks and Tasks for open projects all appear within their respective Views

Running Scripts

Runs a script and prints output to the Lasso Script HTML Result view

Speaks to Lasso via the SOAP protocol, can work with either a local or remote Lasso
Developer installation.

Includes files based on the current project definition.

Warning: This actually runs the script so any database or file tags actions will be executed.

Run Configuration

Requires a valid Lasso username/password within the ‘Lasso Studio for Eclipse Users’
group within the current lasso site.

Edit the Laso Server WSDL parameter to specify a server other than localhost. i.e. a remote
server or a locally defined hostname to access a particular lasso site.

You can define multiple Run configurations for a particular site, each running a specific
script or, you can set a ‘Preferred’ configuration along with a default file. A preferred
configuration will present you with a selection box to select the script you wish to run on
each execution.

Runtime errors will be reported in the Lasso Script HTML Result View.

Debugging Scripts

Like running but, interactive. You can view the variables as you step through your file and
edit them to test different outcomes

Use Breakpoints to suspend processing of your file in the debugger

Tip: break your code up into multiple lines, instead of having a lot of tags on one line of
code. The debugger works line by line so, you can’t stop multiple times in the same code

Getting the Most from Lasso Studio for Eclipse — A30

Lasso Summit 2006 — Manual Getting the Most from Lasso Studio for Eclipse

block if it’s all on one line, nor can you evaluate values from the middle of a line of code,
just the output at the end of the line.

Triggers

A debugging session can be triggered either directly within Eclipse or via the input of an
external browser

Simulate Request - The request is sent from within Eclipse itself, along with any extra
headers configured within the run configuration. Best option if the script doesn’t rely on
external factors (i.e. form input, cookies, get requests, client type, etc)

Wait for Web Browser - Awaits a request from an external browser. Allows execution of the
script with all environment variables in place.

Can set a default method in the debugging tab of the current run configuration

Stepping through your program

Resume (F8) - runs the current script to it’s end or the next breakpoint.
Suspend - suspends processing of the current script
Terminate - Terminate execution of the current script permanently. ie. ‘Abort’

Step Into (F5) - The next expression on the currently selected line is executed and suspends
on the next executable expression. i.e. ‘run next tag’

Step Over (F6) - Like Step Into but, will run any include or library tags in one step. i.e.
‘step over includes’

Step Return (F7) - Allows execution of the current script until it’s end. Execution halts
when an include or library tag are encountered, after the include is loaded. i.e. ‘run to next
include’

Debugging Specific Views

Debug - Control execution of the current script

Breakpoints - Shows current breakpoints and allows you to turn them on or off, as well as
delete them entirely

Variables - shows the current variables and allows editing of them (via contextual menu.
Can also show type names.

Advanced Techniques

Using with Lasso Sites

If you configure a specific hostname on your machine and within the runtime and debug
environments, Lasso will execute the script using the appropriate LassoSite. Likewise for
LassoSites defined by path name.

Remote Debugging

Edit the Lasso Server WSDL parameter in the run configuration to execute the selected file
on a remote Lasso Server

Note, due to security and performance considerations, it is not wise to debug scripts on a
live, production server.

Integration with other Eclipse Plugins and Command line tools

Getting the Most from Lasso Studio for Eclipse — A31

Lasso Summit 2006 — Manual Getting the Most from Lasso Studio for Eclipse

+ Eclipse provides a wide variety of tools for dealing with many different tasks, both open
source and commercial. Among these are included:

Database Editors

XML Editors

HTML, Javascript and CSS Editors
Java development (built in)
C/C++ development

+ Varying levels of support for most scripting languages, i.e. Python, Perl, Ruby, PHP

+ This is in and of itself likely one of the strongest features of the Eclipse platform, you can
do most of your coding work within one tool, lowering support, upgrade and training
costs.

see http://eclipse-plugins.2y.net/eclipse/index.jsp for more Eclipse Plugins.

* Multiple Platform support — Eclipse Works the same on Mac, Windows and Linux. You
can move freely between platforms without notable differences in workflow or features.

+ Team Features — Eclipse features excellent built in support for CVS version control and
add on tools for other SCM (Source Code Management) tools such as Perforce

Getting the Most from Lasso Studio for Eclipse — A32

Lasso Summit 2006 — Manual Database Handling Through Custom Types

Database Handling Through Custom Types

Goran Térnquist

Introduction

Lassoscript allows you to access databases through inlines. The specifics of those databases are
setup once through the administrative interface, and then we refer to them using the inlines.
This way of deferring settings and then connecting functionality to them is called abstraction of
the database handling.

This paper is about how to use Custom Types to make handling of records in database tables. The
start is a basic custom type which will show how to create a custom type as such. In the end of the
paper, you have a small set of custom types that solves a number of issues that the web developer
has deal with on a daily basis.

It is the intention that you will see the benefits from using custom types together with database
access to make your database implementation easy to maintain and easier to test for quality
assurance. While covering the custom types part, you will also learn some about custom tags.

This covers one way of approaching database access in a object oriented way. It is not meant to be
a complete guide to object orientated programming, neither does it employ the perfectly secure
implementation of database access - we will actually bypass the Lasso database security scheme
as much as possible to make things simpler.

Securing the code will be left as an exercise to the reader since it would be a too complex subject
to cover in such a short time. In other words, I've kept the implementation as simple as possible
to focus on the custom type and database part.

Error handling has also been left out to leave space for conceptually important code.

If you're more experienced, skip to the last two sections. Otherwise, please read on while I walk
you through constructing a simple custom type.

What is a custom type?

Custom types, or commonly ctypes, are the way Lassoscript allows you to define your own data
types instead of being limited to the types that are defined in Lassoscript from the start.

Let's look at a custom type using an example:

A rectangle can be defined to cover four points in a coordinate system; a left, top, right and
bottom position.

<?Lassoscript

Define Type: 'Rectangle’;
local: 'top' = 0;
local: 'left' = 0;
local: 'bottom' = 0;
local: 'right' = 0;

Database Handling Through Custom Types — A33

Lasso Summit 2006 — Manual Database Handling Through Custom Types

/Define Type;

var: 'myRectangle' = Rectangle;
//creates an instance of the custom type
7>

It's great to be able to create a variable that automatically has the four points needed to define the
rectangle. But a real world example will prove to us that we need to find out the width, length and
area of the rectangle.

This is the procedural way of solving that need:

<?Lassoscript
Define Tag: 'rectangleWidth', -required='left', -required='right’;
return: (math abs: #right - #left);
/Define Tag;
$myRectangle->'right' = 100;
$myRectangle->'bottom' 50;
var: 'myRectangleWidth (rectangleWidth: $myRectangle->'left', $myRectangle-
>'right');
7>

To me the object oriented way feels both easier and cleaner:

<?Lassoscript
Define Type: 'Rectangle’;
local: 'top' = 0;
local: 'left' = 0;
local: 'bottom' = 0;
local: 'right' = 0;
Define Tag: 'getWidth';
return: (math _abs: self->'right' - self->'left');
/Define Tag;
/Define Type;
var: 'myRectangle' = Rectangle; //creates an instance of the custom type
$myRectangle->'right' = 100;
$myRectangle->'bottom' = 50;
var: 'myRectangleWidth = $myRectangle->getWidth;
7>

By defining the custom tag getWidth within the custom type we have been given a way to actively
use the data defined in the custom type. This is commonly referred to as encapsulation. The
retangle custom type "knows" how to operate on the data.

In due time the programmer will find out that someone might be feeding the custom type with
erroneous data and then the rectangle ctype will evolve. Anywhere where we use the width
calculation on the rectangle ctype will be benefiting from this change.

Define Tag: 'getWidth';

return: (math _abs: (integer: self->'right') - (integer: self->'left'));
/Define Tag;

Will I produce faster and more compact code?

No. Abstraction and generic handling all comes with a cost. Since a ctype is concerned about a
generic situation, everything that could occur has to be handled in a generic way. The upside is
that it will possibly handle quite a few different situations. The downsides are that you will type
more and the code will not be as easily optimized as in the procedural way.

Database Handling Through Custom Types — A34

Lasso Summit 2006 — Manual Database Handling Through Custom Types

So why use custom types at all?

The simple and quite generic answer is: To reach the goals for your web application in a way that
makes it easy to produce, maintain and document your solutions.

Predictability: By using custom types, you will be able to create data types that always has a
specific set of attributes and behave in a specific way. Therefore, the use of these will lead to
results that are easier to predict.

Reusability: Thinking in an object oriented way often leads to generic solutions of problems.
Used the right way, this can save lots of development time when similar problems needs to be
solved in different parts of your application or applications.

Abstraction: When using an object oriented approach, you speak for example of People and how
they behave themselves and relate to other things in your system.

Less complexity: Through abstraction, you can hide complicated tasks and constraints. A good
example of this is the PDF_Doc custom type that let you produce a PDF file in relatively easy way.
There are quite a few more examples that comes with Lasso from the beginning.

Why, in particular, use custom types for database access?

First of all, code controlling database access is very often created when needed. The need at the
moment often defines how far you're thinking when accessing the database. If anything changes
with the database definition or the need behind the database access, then you will need to go
through every place where you've been accessing the database and walk through the process of
creating or changing code, which leads to testing code, which leads to debugging code.

The database access is scattered throughout a web application, and we need a good way to make
sure the data is there when we need it, and that it will be valid data. Custom types and database
access paired together makes it possible to define the database access in one place, and then allow
the scattered code to access the data in a well defined way.

The example

Custom types and the database modeling are forming a good relationship. This will easiest be
shown through an ERD (Entity Relation Diagram).

Company

i

Contact

I will use a simple example throughout this paper. It is a database containing contacts belonging
to a company. The MySQL schema is given below.

Database Handling Through Custom Types — A35

Lasso Summit 2006 — Manual Database Handling Through Custom Types

CREATE TABLE ‘“contact™ (
“key® bigint(20) unsigned NOT NULL auto increment,
“firstname® varchar(64) NOT NULL default '',
“lastname’ varchar(64) NOT NULL default '',
“company key' bigint(20) NOT NULL default '0',
PRIMARY KEY (“key")

);

CREATE TABLE “company™ (

“key® bigint(20) unsigned NOT NULL auto increment,

“name” varchar(64) NOT NULL default '',

PRIMARY KEY (“key")

);

I hope those of you that uses FileMaker or any other type of database will be able to read and
recreate the database from the given schema.

A simple custom type

Taken from example01/code.inc

Define Type: 'C Contact';

local: 'firstname' = '';

local: 'lastname' = '';
Define Tag: 'setName', -required='firstname', -required='lastname';
self->'firstname' = #firstname;
self->'lastname' = #lastname;
/Define Tag;
Define Tag: 'getName';
return: self->'firstname' + ' ' + self->'lastname’;
/Define Tag;
/Define Type;

This example outlines the definition of a simple ctype named Contact. From this moment on we
will be able to define a variable to be a Contact.

var: 'speaker= Contact;

We can also start using it with the same syntax we use with the built in types.

$speaker->(setName: -firstname='Goran', -lastname='Tornquist');

compared to manipulation of a simple string variable

var: 'myName' = 'GOran Tornquist';
$myName->(replace: '0', '0');

From the syntax viewpoint there is no difference between the code accessing the Contact and the
String variables. Though, obviously, they are not equal in function or in contents. The conclusion
is that there's nothing magic or special with ctypes. You can access them in the same way that
you normally access any type of variable.

Database Handling Through Custom Types — A36

Lasso Summit 2006 — Manual Database Handling Through Custom Types

Accessing the attributes

Taken from example02/code.inc

Define Type: 'C Contact';
local: 'key' = 0;//unique key to identify record

local: 'firstname' = '';

local: 'lastname' = '';

//*** previous code for member tags taken out for reasons of space ***/
Define Tag: 'getKey'; //getting the the key instance variable

return: self->key;

/Define Tag;

/* You will rarely use the setKey method from outside of this custom type */
Define Tag: 'setKey', -required='key'; //setting the key instance variable
self->'key' = (integer: #key);
/Define Tag;

/Define Type;

The member variable 'key' is directly referring to the field that uniquely is used to store values to
identify a specific contact. We use member tags to access the key because it makes our code less
specific to the type of the key. Even though we won't likely change the type of the key, it is good to
use a generic way of handling such a common feature of a database record. If we later create the
company ctype, then it will be good to access the key of that ctype in a similar manner.

Retrieving data

To load the contact data from the database, we define a new member tag called 'load". Since the
object representing the record doesn't contain any valid data yet, we have to provide the 'load’
member tag with a valid key to retrieve the data from the database.

This is how the 'load' member tag looks like.

Taken from example03/code.inc

Define Tag: 'load', -required='key';
inline: -search, $gDBspec,
-table='contact', -keyfield='key', -keyvalue=(integer: #key), -maxrecords=1;

records;

self->'key' = (integer: (field: 'key'));
self->'firstname' = (field: 'firstname');
self->'lastname' = (field: 'lastname');
/records;

/inline;

/Define Tag;

It looks very much like any other inline tag. So, what's so special with this? At the moment it's not
about the inline itself, but what the inline contains. All of the database record data is copied to
the member variables of the ctype.

Using the ctype data

The way to use the data from the ctype variable can be very much alike any other data used
within a html page.

Database Handling Through Custom Types — A37

Lasso Summit 2006 — Manual Database Handling Through Custom Types

taken from example04/contact.htm

<form name="contact form" id="contact form" action="" method="post">
<fieldset>
<legend>Contact info</legend>
<label for="inp_firstname">Firstname
<input type="text"
name="inp firstname" id="inp firstname"
value="[$speaker->'firstname']" />
</label>
<label for="inp_ lastname">Lastname
<input type="text"
name="inp lastname" id="inp lastname"
value="[$speaker->'lastname']" />
</label>
</fieldset>

</form>

Using getters and setters

There are different schools telling you their truth about object oriented programming. One way
to look at member variables is that you should never access them directly. The main reason for
this is that all access to data or functions through the object should be abstracted (or controlled).

While this is generally a very good idea, it adds chores to the programmers todo list: Writing
getters and setters as well as testing and debugging the same. Also, the overhead to call a member
tag and to access a member variable is completely different. I haven't personally carried out any
performance tests to find the difference, but I expect the additional overhead to be significant
compared with the simple access of a variable.

In different integrated development environments (IDE's) like the Java editor in Eclipse, you'll
find wizards to generate the equivalent to member tags for getters and setters of the member
variables. As of now, there is no such feature in Lasso Studio for Eclipse. If there were, then we
would have a predictable generator of Lassoscript code for getters and setters. Predictability
means consequential behaviour, and such can easily be tested and measured. Knowing what we
have and what's going to happen builds stability.

In the code supporting this paper I have chosen to access the member variables directly. There
are good sides to this and there are bad sides. As long as you know which they are, you're ready to
accept the consequenses.

Storing data

The process of storing data in the database is quite straightforward, and does not yet reveal any
special features of object orientation. We will get back to this member tag later to make the
handling more generic than at the moment.

Taken from example05/ctypes.inc

Define Tag: 'save';
if: self->GetKey == 0; //this is an add operation
inline: -add, $gDBspec, -table='contact', -keyfield='key', -keyvalue=self->GetKey,
'firstname'=self->'firstname’,
'lastname'=self->'lastname’;
self->(setKey: -key=keyfield value); //it is important to set the key of the object
/inline;
else; //this is an update operation

Database Handling Through Custom Types — A38

Lasso Summit 2006 — Manual Database Handling Through Custom Types

inline: -update, $gDBspec, -table='contact', -keyfield='key', -keyvalue=self->GetKey,
'firstname'=self->'firstname’,
'lastname'=self->'lastname’;
/inline;
/if;
/Define Tag;

Finding generic ways to solve common operations

Earlier we used the 'load' member tag for loading the contact data from the database. We are now
going to rewrite it to allow for more generic implementation. This way we can reuse the code in
other ctypes as well as test it thoroughly through use in other ctypes.

The new version of C_Contact->Load looks like this:

Taken from example06/ctypes.inc

Define Tag: 'load', -required='key';
inline: -search, $gDBspec,
-table='contact', -keyfield='key', -keyvalue=(integer: #key), -maxrecords=1;
records;
self->LoadX;
/records;
/inline;
/Define Tag;

Instead of specifying the fields directly in the C_Contact->Load we split the functionality
between one generic member tag and one specific, called C_Contact->loadX. This way we know
that most of the code that is specific to the contact table will be found in C_Contact->loadX.
Define Tag: 'loadX';
self->(setKey: -key=(field: 'key'));
self->'firstname' = (field: 'firstname');

self->'lastname' = (field: 'lastname');
/Define Tag;

If you worry about the references to the contact table in C_Contact->load, please don't.We'll
come back for another round of making the code generic.

Loading more than one contact

So far we've been concerned with only one contact, but we also need a way to present a list of
contacts. It would be good if that code could be both stored with the rest of the code acessing the
contact table. Luckily, the object oriented model provides us with a way to do that also.
Returning an array of contacts

The code to return an array of contacts is quite straight forward.

Define Tag: 'getContactList';

local: 'result' = array;

local: 'oneRecord' = map;

inline: -search, $gDBspec, -table='contact', -keyfield='key', -maxrecords='all';
records;

#oneRecord = C Contact;
#oneRecord->1oadX;
#result->(insert: #oneRecord);

Database Handling Through Custom Types — A39

Lasso Summit 2006 — Manual Database Handling Through Custom Types

/records;

/inline;

return: #result;
/Define Tag;

Using an array of contacts

Here follows the contents of the the file example06/list.htm which is included as an html
fragment into the main html file.
<table id="contact list">
<tr>
<th></th>
<th class="key">Key</th>
<th class="firstname">Firstname</th>
<th class="lastname">Lastname</th>
</tr>
[iterate: C Contact->getContactList, (var: 'oneContact')]
<tr>
<td>GetKey]">Edit</td>
<td class="key">[$oneContact->'key']</td>
<td class="firstname">[$oneContact->'firstname']</td>
<td class="lastname">[$oneContact->'lastname']</td>
</tr>
[/iterate]
</table>

You can see that we're not even creating a variable to access the member tag. This way of using
an custom type is very common in pure object oriented languages such as Java, though there the
ctypes are called classes.

This way of accessing the code works because Lasso will internally create a temporary variable
from the ctype definition and after it's been used - i.e. no code is referring to it - the temporary
variable will be forgotten.

Increasing the efficiency of instantiation of custom types

Whenever a custom type is used to create a variable, it will run all the code between the
[Define_Tag] and the [/Define_Tag]. The reason for this is that earlier versions of Lassoscript was
depending on code being executed at the time of the creation.

Now, much time has passed and the object oriented support in Lassoscript has grown to a more
mature version. Today the only code that is expected to be found in [Define_Tag]...[/Define_Tag]
is definitions of locals, which are called member variables, and definitions of member tags.

Since we're supporting this more modern way of declaring the ctype, we let Lasso find that out by
using the special keyword -prototype.

It looks like this:

Define Type: 'C Contact', -prototype;

This will tell Lasso to immediately create an invisible variable which will be copied whenever we
create a new instance of the C_Contact ctype. By doing that the speed will increase more than
tenfold when used with ctypes with a large amount of code. You will find out that ctypes tends to
be defined by a lot of code - generic code demands that you take a lot of possible cases in account.

Database Handling Through Custom Types — A40

Lasso Summit 2006 — Manual Database Handling Through Custom Types

Delete a record

To delete a contact we need a C_Contact->delete member tag. It looks almost as the C_Contact-
>save, except it doesn't make any use of parameters.

Taken from example08/ctypes.inc

Define Tag: 'delete’';
if: self->hasValidKey; //this is an add operation
inline: -delete, $gDBspec, -table='contact', -keyfield='key', -keyvalue=self->GetKey;
self->(setKey: -key=0); //it is important to reset the key of the object
//so that it is considered invalid
/inline;
/if;
/Define Tag;

The generic question

In C_Contact->delete we use a member tag for questioning the validity of the record key. By
doing this we will know that all code, no matter where it's being used will define the invalid key
in the same way.

Taken from example08/ctypes.inc

Define Tag: 'hasValidKey';
return: self->key > 0;
/Define Tag;

This kind of questioning of status or state of member variables is encouraged since the code uses
it becomes very easy to read. See also the paragraph about getters and setters.

Compare

if: self->key > 0;

with

if: self->hasValidKey;

The latter version is easier to read and has the advantage that no matter the type of key that the
record uses, the code will still look the same from the callers' perspective.

What we have done here is to introduce a questioning action in the ctype. With the references to
human languages this is often called a predicate.

Hiearchy and inheritance in general

When a ctype is based on another ctype, we use a hierarchical way of defining our conceptual
model of the world. Before we start adapting the C_Contact ctype to be using inheritance to pass
over the generic code to a base ctype, we'll take a look at a totally different case.

Base custom type

Let's consider a geometric application which needs two different types of shapes: the rectangle
and the ellipse.

Database Handling Through Custom Types — A41

Lasso Summit 2006 — Manual Database Handling Through Custom Types

We could define them like this

Define Constant: 'pi', 3.14;
Define Type: 'Rectangle’;
local: 'top' = 0.0;
local: 'left' = 0.0;
local: 'bottom' = 0.0;
local: 'right' = 0.0;
Define Tag: 'getWidth';
return: (math abs: (decimal: self->'right') - (decimal: self->'left'));
/Define Tag;
Define Tag: 'getHeight';
return: (math abs: (decimal: self->'bottom') - (decimal: self->'top'));
/Define Tag;
Define Tag: 'getArea;
return: self->getWidth * self->getHeight;
/Define Tag;
/Define Type;
Define Type: 'Ellipse';
local: 'top' = 0.0;
local: 'left' = 0.0;
local: 'bottom' = 0.0;
local: 'right' = 0.0;
Define Tag: 'getWidth';
return: (math abs: (decimal: self->'right') - (decimal: self->'left'));
/Define Tag;
Define Tag: 'getHeight';
return: (math abs: (decimal: self->'bottom') - (decimal: self->'top'));
/Define Tag;
Define Tag: 'getArea;
return: self->getWidth * self->getHeight * pi;
/Define Tag;
/Define Type;

But I'd rather define them like this

Define Constant: 'pi', 3.14;
Define Type: 'Shape';
//the position of the boundary box is defined below
local: 'top' = 0.0;
local: 'left' = 0.0;
local: 'bottom' = 0.0;
local: 'right' = 0.0;
Define Tag: 'getWidth';
/Define Tag;
Define Tag: 'getHeight';
/Define Tag;
Define Tag: 'getArea;
/Define Tag;
/Define Type;

Define Type: 'Rectangle', 'Shape';
Define Tag: 'getWidth';
return: (math abs: (decimal: self->'right') - (decimal: self->'left'));
/Define Tag;
Define Tag: 'getHeight';
return: (math abs: (decimal: self->'bottom') - (decimal: self->'top'));
/Define Tag;
Define Tag: 'getArea;
return: self->getWidth * self->getHeight;
/Define Tag;
/Define Type;

Define Type: 'Ellipse', 'Shape’;
Define Tag: 'getWidth';
return: (math abs: (decimal: self->'right') - (decimal: self->'left'));

Database Handling Through Custom Types — A42

Lasso Summit 2006 — Manual Database Handling Through Custom Types

/Define Tag;
Define Tag: 'getHeight';
return: (math abs: (decimal: self->'bottom') - (decimal: self->'top'));
/Define Tag;
Define Tag: 'getArea;
return: self->getWidth * self->getHeight * pi;
/Define Tag;
/Define Type;

Please note the empty declarations of getWidth, getHeight and getArea in the Shape ctype. These
are there as placeholders so that code that refers to any type of Shape also will be able to perform
without error.

When you declare a variable of the type Rectangle, you have to understand that a rectangle is not
only a rectangle, but also a Shape.

var: 'myRectangle' = Rectangle;

$myRectangle->'right' = 100.0;

$myRectangle->'bottom' = 50.0;
var: 'myArea' = $myRectangle->getArea;

The example here will return 5000.0 as the area since it appears frontmost to be a rectangle. But
all the calculations are done on the member variables of the Shape. So it seems you have access to
everything of the ancestor ctype called Shape.

The space here is too limited to go into the real depths of inheritance, shadowing, overloading
and quite a few more object oriented paradigms. If this seems interesting to you, there are a lot of
books on the subject.

The base custom type

We have reached a point where we can start to discuss our base custom type. The foundation
for the database access through custom types. To get there with the whole picture, we'll skip to
examplel2 in the supporting material.

The goal

First of all, where are we going with the C_Contact custom type? We're limiting it to only consist
of attributes and actions that has to be defined within the concept of a contact. The rest is either
part of the base ctype or is a special form of Contact itself - a successor to the C_Contact, e.g.
C_Salesperson or something along that line.

Taken from example12/ctypes.inc

Define Type: 'C Contact', 'C Record', -prototype;
local: 'table' = 'contact';
local: 'keyField' = 'key';

local: 'firstname' = '';

local: 'lastname' = '';

Define Tag: 'loadX';

self->'firstname' = (field: 'firstname');
self->'lastname' = (field: 'lastname');
/Define Tag;

Define Tag: 'save';
self->parent->(save:

Database Handling Through Custom Types — A43

Lasso Summit 2006 — Manual Database Handling Through Custom Types

'firstname'=self->'firstname’,
'lastname'=self->'lastname’

)

/Define Tag;

Define Tag: 'setName', -required='firstname’, -required='lastname’;
self->'firstname' = #firstname;

self->'lastname' = #lastname;

/Define Tag;

Define Tag: 'getName';
return: self->'firstname' + ' ' + self->'lastname’';
/Define Tag;

/Define Type;

The amazing part is that this is the full implementation of the C_Contact in our example. It
would be very easy to define a company ctype to complement the C_Contact.

Another ctype created in virtually no time
Let's show the C_Company ctype would look like:

Taken from example12/ctypes.inc

Define Type: 'C Company', 'C Record', -prototype;
local: 'table' = 'company';
local: 'keyField' = 'key';

local: 'name' = '';

Define Tag: 'loadX';
self->'name' = (field: 'name');
/Define Tag;

Define Tag: 'save';
self->parent->(save:
'name'=self->"'name’

)i

/Define Tag;

/Define Type;

What we have done here is to define the ctype, add the member variables to show what is
contained in the database table, and specified how we would like these values to be loaded and
saved from the database.

The ancestor of all database records

To have our C_Contact and C_Company ctypes working we need the base ctype defined. This is
what you would call an abstract class in OOP lingo. It means that there will never be a variable
directly defined being this type. There will instead be C_Contact based on C_Record and C_
Company based on C_Record.

Dissection of the C_Record custom type

This section is a bit differently structured than the previous ones. It is merely a wrap up of what
has been covered in the past pages. Some parts are quite advanced, some are less.

Database Handling Through Custom Types — A44

Lasso Summit 2006 — Manual Database Handling Through Custom Types

Define Type: 'C Record', -prototype;
local: 'key' = null;
local: 'table' = '';
local: 'keyField' = '';
local: 'keyType' = 'integer';

The member variables here are telling us what a record consists of. Since there is no concept of a database or a table
in this example, | have chosen to include the table name in the record, but left out the database and authentication
information. The latter decision has been done to leave place for a Roundtable discussion.

Define Tag: 'castKey', -required='key';
return: ((pair: (\(self->'keyType'))=(array: #key))->invoke);
/Define Tag;

The C_Record->castKey member tag is what makes the record being independent of the type of the keyfield. It
will on the fly cast the key that has been passed as a parameter to the specified keyfield type. If we would like to
get really in to the depths, this could also be a ctype itself, which would handle more advanced type such as non-
predictable record keys.

Define Tag: 'getKey'; //getting the the key instance variable
return: self->key;
/Define Tag;

/* You will rarely use the setKey method outside the custom type hierarchy */
Define Tag: 'setKey', -required='key'; //setting the key instance variable
self->'key' = (self->(isValidKey: #key) ? self->(castKey: #key) | null);
/Define Tag;

Define Tag: 'hasValidKey';

return: self->(isValidKey: self->'key');

/Define Tag;

Define Tag: 'isValidKey', -required='key"';
return: #key != null && ((pair: (\(self->'keyType'))=(array: #key))->invoke) != 0;
/Define Tag;

The C_Record->getKey, C_Record->setKey, C_Record->hasValidKey, and C_Record->isValidKey forms the interface
to access the key and to validate the key in a generic manner. This is a good example of when getters and setters are
greatto use.

Define Tag: 'load', -required='key'

if: self->(isValidKey: #key);

inline: -search, $gDBspec->getSpec,
-table=self->'table', -keyfield=self->'keyfield', -maxrecords=1, -keyvalue=#key;
records;

self->(setKey: -key=(field: self->'keyfield'));
self->LoadX;

/records;

/inline;

/if;

/Define Tag;

The C_Record->load tag does the actual job of accessing the database to locate the record. It is the equivalent of
the [inline: -search] container. Since the key handling is a instrumental part of the generic handling of a record, we
have put the responsibility to set the key value on the C_Record ctype whenever it can be done.

Define Tag: 'loadX';
/Define Tag;

The C_Record->loadX tag is the supporting tag that actually performs the copying of data from the database to the
abstracted database record.

Database Handling Through Custom Types — A45

Lasso Summit 2006 — Manual Database Handling Through Custom Types

Define Tag: 'save';

if: self->hasValidKey; //this is an update operation

inline: -update, $gDBspec->getSpec,

-table=self->'table', -keyfield=self->'keyfield', -keyvalue=self->GetKey, params;

/inline;

else; //this is an add operation

inline: -add, $gDBspec->getSpec,

-table=self->'table', -keyfield=self->'keyfield', -keyvalue=self->GetKey, params;

self->(setKey: -key=keyfield value); //it is important to set the key of the
object,

//so the live object is considered valid

/inline;

/if;

/Define Tag;

The C_Record->save tag has a little bit of a different implementation than the C_Record->load tag. The reasons
for this is that we might be wanting to save different fields of the database in different situations. However in this
implementation, a loaded successor of C_Record must be fully loaded to be considered valid.

Define Tag: 'delete’';

if: self->hasValidKey; //this is an add operation

inline: -delete, $gDBspec->getSpec,

-table=self->'table', -keyfield=self->'keyfield', -keyvalue=self->GetKey;
self->(setKey: -key=null); //it is important to set the key of the object
//so that it is considered invalid

/inline;

/if;

/Define Tag;

The C_Record->delete tag is the opposite of the C_Record->save tag. The most important part is to invalidate the
key so that we know that the live object is not associated with a database record anymore. It is therefore perfectly
possible to do a [Sspokesman->delete] followed by a [Sspokesman->save]. Most likely that would have no use in
the real world, but the essence is that we can trust a deleted record to be fully represented as deleted.

Define Tag: 'getList’;
local: 'result' = array;

local: 'oneRecord' = map;

inline: -search, $gDBspec->getSpec,
-table=self->'table', -keyfield=self->'keyfield', -maxrecords='all';
records;

#oneRecord = (\(self->type))->Invoke;
#oneRecord->(setKey: -key=(field: self->'keyfield'));
#oneRecord->1oadX;

#result->(insert: #oneRecord);

/records;

/inline;

return: #result;

/Define Tag;

The C_Record->getlist tag is the foundation for a general type of loading more than one record from a database.
For it to be useful you'd need to define different sorting orders. For performance sake you'd need to define partial
loading etc. The technique used to instantiate the ctype is one of the major strengths behind dynamically typed
object oriented languages.

/Define Type;

Summary

Once you start using ctypes in this way you'll be stuck into the lazy life of expecting things to
behave themselves. You are allowed not only to define custom tags that are used to extend the

Database Handling Through Custom Types — A46

Lasso Summit 2006 — Manual Database Handling Through Custom Types

functionality of Lasso, but also to build new conceptual models of "things" and "objects". Most
likely you'll start to speak about the database records in a different manner.

This is the start of a two-tier database solution. Your next step would be a three-tier solution,
which can be constructed upon a well built two-tier solution.

Database Handling Through Custom Types — A47

Lasso Summit 2006 — Manual AJAX Asynchronous JavaScript and XML

AJAX Asynchronous JavaScript and XML

By Fletcher Sandbeck

Introduction

AJAX is an acronym for Asynchronous JavaScript and XML. It refers to a technique of building
dynamic Web sites by downloading data as XML fragments through a background process
written in HTML. However, AJAX is also shorthand for a new generation of Web sites which
allow the contents of the page to be manipulated without reloads.

The idea of building Web sites which are more dynamic and more responsive to users has been
around a long time. One prior incarnation was dubbed DHTML or dynamic HTML. Another
current buzzword for this type of Web site is Web 2.0.

This paper discusses a collection of techniques which are commonly collected under the AJAX
moniker. It shows how Lasso works as the back-end for an AJAX solution and how the LJAX
(Lasso JavaScript And XML) framework can be used to make programming a dynamic Web site
easier. Many of the techniques are derived from the script.aculo.us JavaScript libraries and the
Prototype JavaScript framework.

The examples presented in this paper are collected into an AJAX Examples Pack which is
included on the Lasso Summit CD. The folder “ExamplesPack” should be dragged into your Web
server folder and then accessed through a URL like:

<http://localhost/ExamplesPack/AJAX/index.lasso>

Web Site Interactions

Traditionally a visitor’s interaction with a Web site has been defined in terms of either following

a series of links or filling out and submitting forms. These techniques have been sufficient to
create Web sites for newspapers, shopping carts, message boards, online banking, and many more
applications.

Plug-in technologies including Flash and Java make it possible to embed more dynamic
applications within Web sites. Flash-based Web sites are often heavily graphics based with
animations. Flash allows for interactivity to the point where even video games can be
implemented within a Web browser. Java can similarly be used to create interactivity within a
downloaded applet whose Ul is displayed within a browser.

JavaScript presents a technique of creating dynamic Web sites without using plug-in
technologies. JavaScript can be used to auto-fill forms, to check form values before they are
submitted, to submit forms immediately after a value has been entered rather than waiting for a
submit button to be pressed, and more.

The goal of many AJAX Web sites is to present a user interface which is as rich and responsive

as that of any traditional desktop application, but to present that interface entirely in a Web
browser. AJAX sites implement drag and drop of page elements, direct editing of text on the page,
and pages that update automatically without reloading.

AJAX Asynchronous JavaScript and XML — A48

Lasso Summit 2006 — Manual AJAX Asynchronous JavaScript and XML

The conceit of AJAX is that this can be accomplished within a Web browser without any plug-ins
like Flash and without downloading Java Applets.

Foundation Technologies

AJAX relies on four key Web browser standards: JavaScript, XHTML, XMLHttpRequest, and the
DOM.

JavaScript - This ubiquitous client-side scripting language ties all the other technologies
together. JavaScript is used to capture the site visitor’s mouse clicks and key strokes, fetch data
from the server using XMLHttpRequest, parse the resulting XHTML, and rewrite the page’s
DOM to reflect the new data.

XHTML - XHTML is an elaboration of the HTML standard which makes it follow the same
rigorous parsing rules that define XML. XHTML is important to AJAX since it makes it possible
for JavaScript to easily parse and manipulate downloaded data without worrying about all the
quirks and inconsistencies of traditional HTML.

XMLHttpRequest - This JavaScript function, originally introduced by Microsoft and since
embraced by all other major browsers, allows XHTML content to be downloaded asynchronously
from whatever Web site is currently being visited in the browser. This secondary data channel is
the key to allowing a site to send and receive data without unnecessary browser page reloads.

DOM - The Document Object Model is the Web browser’s internal representation of the current
page being shown to the site visitor. The current DOM can be manipulated through JavaScript
allowing the page to be modified without reloading. DOM manipulations can be as simple

as minor text or form element value changes or as major as CSS overhauls or complete page
replacements.

A common AJAX procedure is to use JavaScript to call XMLHttpRequest when the user clicks on
a link or submits a form. XMLHttpRequest fetches an XHTML fragment and manipulates the
DOM of the current page in order to show the new content without reloading page.

Flow Chart

A traditional Web site using links or forms has the following basic flow chart. A Web page is
downloaded and displayed to the visitor, they click on a link or submit a form and that action is
uploaded to the Web server, a new Web page is generated in return.

Download HTML

Display Web Page

Visitor Clicks on Link or Submit Button
Upload Data

Generate New HTML Page

Download HTML

T S S T
VVVYVVYV

An AJAX Web site has a tighter loop. By only updating those portions of the Web site which have
actually changed, the Web site seems more interactive. When the visitor clicks a link or submits a
form the action is uploaded to the Web server, but only a fragment of the page is downloaded and
then merged into the visible page in the browser.

AJAX Asynchronous JavaScript and XML — A49

Lasso Summit 2006 — Manual AJAX Asynchronous JavaScript and XML

Download HTML

Display Web Page

Visitor Clicks on Link or Submit Button
Asynchronous JavaScript

-> Upload Data

-> Generate New XHTML Fragment

-> Download XHTML Fragment

-> Update Page DOM Using Fragment

-> Visitor Clicks on Link or Submit Button

o
VV VYV

LJAX

A set of tools have been created in Lasso and JavaScript which work together to make AJAX
techniques easy. These tools are collectively called LJAX and consist of the following. Full
documentation of these tools is included at the end of this paper.

- Lasso.IncludeTarget(target,options) - This JavaScript function encapsulates the process of
sending an action to the Web server, downloading an XHTML fragment, and merging that
fragment with the current page’s DOM.

- [LJAX _Target] ... [/LJAX_Target] - This Lasso tag is used to mark different portions of a site so
they are served for LJAX requests, for normal requests, or only for certain LJAX targets.

- LJAX.Lasso - This page is created by the site author and is responsible for serving appropriate
XHTML fragments based on the what targets and other parameters are passed to it.

In order to use these tools a Lasso site must validate as XHTML. The site can first be written
using traditional forms and links. The elements of the site that need to be dynamic are identified.
The [LJAX _Target] ... [/LJAX_Target] tags are used to block out portions of the page which are
LJAX enabled. The LJAX.Lasso page is created to serve XHTML fragments. Finally, the links and
forms which should trigger dynamic updates are modified to use Lasso.IncludeTarget().

AJAX Example

The AJAX example included with this paper shows how these tools can be used to create a
dynamic Web site. The example is served as a “one file” solution where the “index.lasso” page
handles all requests and uses different include files to generate page contents. The “index.lasso”
page includes the HTML template wrapper. The “template.lasso” file from the examples is
responsible for generating the page contents by checking the “code” action parameter and serving
the appropriate file from the “examples” folder.
index.lasso
examples/template.lasso
examples/dragdrop.lasso

examples/dynamic.lasso
examples/reveal.lasso

The “ljax.lasso” page from the example functions similarly to the “index.lasso” page. It also
includes the “template.lasso” file to serve page contents. However, this contents is wrapped in
<ljax> ... </ljax> tags and served as an XHTML fragment rather than as an HTML page for

AJAX Asynchronous JavaScript and XML — A50

Lasso Summit 2006 — Manual AJAX Asynchronous JavaScript and XML

the Web browser. The “ljax.lasso” file also intercepts several targets and serves specially crafted
XHTML fragments.

Within the “template.lasso” file the [LJAX_Target] ... [/LJAX_Target] tag is used to signify

that the HTML <div>s which define the template should only be served if the current target is
“page_frame” or if there is no target. This means that these template elements will not be served
for other targets.

[ljax _target: ‘page frame’, -notarget]

[/.{jaxitarget]

Several of the individual examples also use [LJAX_Target] ... [/LJAX_Target]. The
“dragdrop.lasso” file has a section which is served if the target is “nu_content” or “page_frame”
or if there is no target.

[ljax_target: (array: ‘nu content’, ‘page frame’), -notarget]

[/.{jaxitarget]

These [LJAX_Target] ... [/LJAX_Target] tags create a situation where if the target is “nu_content”
then only a small portion of the “dragdrop.lasso” file is served. If the target is “page_frame” then
the complete template and page contents is served. If there is no target then the complete HTML
page is served. Loading these URLs in your browser lets you see how the contents changes for the
different -Target values.

<http://localhost/examplespack/ajax/ljax.lasso?page=dragdrop&-target=page_frame>

<http://localhost/examplespack/ajax/ljax.lasso?page=dragdrop&-target=nu_content>

Each of the examples demonstrates a different LJAX principle or script.aculo.us technique.
In order to understand each example you should first try the user interface, then look at the
appropriate page from the “examples” folder and any associated JavaScript functions in the
“ajax.js” file. Loading the “ljax.lasso” file directly can also help to understand how XHTML
fragments are being used to update the page.

AJAX Asynchronous JavaScript and XML — A51

Lasso Summit 2006 — Manual AJAX Asynchronous JavaScript and XML

Example Navigation

Index > :
AX

EaayEarn AJAX Examples
Progressive Form This site includes a number of examples of dynamic
Drag and Drop HTML techniques. Each example has a short description.
Dynamic Update The code for each example should be examined to see

how it works.
Panel Collapse
List Reorder Many of the techniques are built using the script.aculo.us
Auto-Complete JavaScript libraries and the Prototype JavaScript

framework. The sites for both of these resources contain
many links to additional examples.

Lasso Professional 8 is used as the back-end data source
for the AJAX enabled examples.

The menu on the left side of the AJAX example is itself a dynamic element. Each time a link in
the menu is selected the page content is refreshed dynamically rather than having the entire page
reload.

<a href="index.lasso?page=dragdrop" onclick="Lasso.includeTarget(‘page frame’, {args:
this, afterFunc: nu decorate}); return false;">Drag and Drop

The links in the menu each have an href that would reload the page normally. If the browser
doesn’t support JavaScript (or something goes wrong while executing the JavaScript handler)
then the page will simply reload with the new contents like any traditional Lasso Web site.

The onclick handler allows a JavaScript function to be called when the user clicks on the link.
The Lasso.includeTarget() function is called with a target of “page_frame”. It uses the parameters
from the current anchor tag “this” as its args option. And, it asks that nu_decorate() function

be called after the page is refreshed dynamically. Finally, false is returned to prevent the browser
from handling the click (there is no need since we handled it dynamically).

When the link is clicked by a site visitor the XMLHttpRequest method is used to fetch the
following URL asynchronously (in the background).

<http://localhost/examplespack/ajax/ljax.lasso?page=dragdrop&-target=page_frame>

The contents is an XHTML fragment which includes new contents for the HTML div tag with an
ID of “page_frame”. The Lasso.includeTarget() tag swaps in the new contents and the user sees
the new page contents without the entire page refreshing.
<ljax>
<div class="group list" id="page frame">
</'<'1' iv>
</ljax>

Finally, the nu_decorate() function is called to initialize some elements that the drag and drop
example needs (see below for details).

It is interesting to turn JavaScript off and try the site. This returns the site to its non-dynamic
behavior where each page reloads. The performance of the site is similar in both cases (since the

AJAX Asynchronous JavaScript and XML — A52

Lasso Summit 2006 — Manual AJAX Asynchronous JavaScript and XML

site is quite simple), but with the AJAX version the URL of the site never changes and the browser
user interface doesn’t “flash” as much.

Simple Form

Index

Easy Form > Easy Feem

Progressive Form This example shows how a form can be created which
Drag and Drgp shows the result in-place when it is submitted.
Dynamic uPdate First Name: john

Panel Colcliapse Last Name: Dol i

List Reorder —

Auto-Complete

_ Hello John Doe!

The simple form demonstrates how JavaScript can be used to intercept a form submission and
change it into an LJAX dynamic page refresh instead. The results of the form are shown below
the form dynamically without refreshing the page. Submitting the form multiple times simply
updates the results.

The form from the page is shown below. The form is typical except for the onsubmit handler
in the <form> tag and the submit <input> tag. The handlers call the JavaScript function
Lasso.includeTarget() with a target of form_display. The args for the handler in the <form> tag
references “this” to pass the values of all the form elements to the called page. The args for the
handler in the <input> tag references “this.form” to accomplish the same thing. Each handler
returns false in order to prevent the browser from submitting the form usuing the usual method.
<form action="index.lasso" method="post"
onsubmit="Lasso.includeTarget(‘form display’,{args:this}); return false;">
<input type="hidden" name="page" value="easyform" />
<p>First Name:
<input type="text" name="form first" value="[var: ‘form first’']" />

Last Name:
<input type="text" name="form last" value="[var: ‘form last’']" />

<input type="submit" name="form action" value="Submit"
onsubmit="Lasso.includeTarget(‘form display’,{args:this.form}); return false;" /></
p>
</form>

The Lasso.includeTarget() tag calls the solution’s ljax.lasso file with a target of form_display.
The [LJAX _Target] ... [/LJAX_Target] tags ensure that only the portion of the page which has
changed is served. The LassoScript at the top always runs since it is not contained in [LJAX_
Target] ... [/LJAX_Target] tags. The introduction text and form are only served if the target is
page_from or if there is no target. That is if the page is being loaded by the user clicking on a
menu option or by visiting the URL of the page directly.

<?LassoScript
var: ‘form first’ = (action param: ‘form first’);
var: ‘form last’ = (action param: ‘form last’);
7>

[ljax _target: (array: ‘page frame’), -notarget]
<p>Easy Form</p>

<form action="index.lasso" method="post"

AJAX Asynchronous JavaScript and XML — A53

Lasso Summit 2006 — Manual AJAX Asynchronous JavaScript and XML

onsubmit="Lasso.includeTarget(‘form display’,{args:this}); return false;">

</form>
[/ljax _target]

The results of the form are wrapped in [LJAX_ Target] ... [/LJAX_ Target] tags which display
the results if the target is page_frame or form_display or if there is no target. In particular,
when the target is form_display this portion of the page is displayed, but the top of the page is
not. The <div> contains results if either the first or last name have a value or is empty if both
the first name and last name are empty. The first time the page is loaded this <div> is served
empty, but on subsequent loads the <div> contains the “Hello” message. The xmlns attribute
of the <div> is required only if the <div> is being served as part of an XHTML fragment.
[ljax target: (array: ‘page frame’, ‘form display’), -notarget]
[if: $form_first != *’ || $form_last != *’]
<div id="form display"[if: (var: ‘ljax’) == true]
xmlns="http://www.w3.0rg/1999/xhtml"[/if]>
<p>Hello [var: ‘form first’] [var: ‘form last’]!</p>
</div>
[else]
<div id="form display"[if: (var: ‘ljax’) == true]
xmlns="http://www.w3.0rg/1999/xhtml"[/if]></div>

[/if]
[/ljax target]

If the form is submitted with the values “John” and “Doe” then the ljax.lasso page ends up
serving code like that shown below. The Lasso.includeTarget() tag is responsible for finding an
element with the same ID of form_display and replacing its contents with the contents of the
<div> from this fragment.
<ljax>
<div id="form display" xmlns="http://www.w3.0rg/1999/xhtml">
<p>Hello John Doe!</p>

</div>
</ljax>

This example shows the most basic form of LJAX, a form is submitted and a portion of the page is
dynamically refreshed. This example can be used as the basis for a wide range of solutions which
need to provide user feedback, but don’t need the entire page to be refreshed each time the user
submits additional data. For example, Lasso could actually be adding records to a database each
time the form is submitted and the feedback could be a confirmation that the record was added.

AJAX Asynchronous JavaScript and XML — A54

Lasso Summit 2006 — Manual AJAX Asynchronous JavaScript and XML

Progressive Form

Progressive Form >

The progressive form demonstrates how a guided form can be created which shows additional
options as the visitor makes choices. The visitor is asked to choose a year, then a month, and
finally a day. A calendar of the selected month is shown below with the selected day highlighted.
As the visitor progresses only the parts of the page which need to be updated are.

This example uses the same basic idea as the easy form shown above. When the year is chosen
an onchange handler calls Lasso.includeTarget() to refresh the dynamic portion of the page. The
dynamic portion encompasses the month, day, and calendar displays. The afterFunc option is
used to perform a task after the dynamic contents of the page has been updated. In this case the
<div> with ID cal_month is made visible by manipulating its CSS display attribute.

<select name="cal year"
onchange="Lasso.includeTarget(‘cal display’,{args:this.form,
afterFunc:function(request){
document.getElementById(‘cal month’).style.display = ‘block’;
130
<option value=""[if: $cal year == 0] selected="selected"[/if]>
Select a Year...
</option>
[loop: -from=2000, -t0=2010]
<option value="[loop count]"
[if: $cal year == loop count] selected="selected"[/if]>
[Loop count]
</option>
[/loop]
</select>

The <div> for cal_month has its CSS display attribute initially set to none. This prevents the
<div> from being shown on the page. After a year is selected this attribute is set to block (the
default for <div>s) in order to have the <div> be visible on the page again.

AJAX Asynchronous JavaScript and XML — A55

Lasso Summit 2006 — Manual AJAX Asynchronous JavaScript and XML

<div id="cal month" style="[if: $cal year == ‘']display: none; [/if]border-color:
white;"“> .. </div>

After a month is chosen the day is shown using a similar technique and after a day is chosen the
calendar itself is displayed. There is no provision in this example for rolling the inputs back up
so the user can de-select a day and de-select a month. Instead, the day and calendar are simply
hidden if the month is set to an invalid value.

This technique can be used on sites which need to present the user with a series of questions or
hierarchical choices. As the user makes choices the remaining elements of the page are refreshed
giving either the next question or the next level of choices.

Note - The browser will not interpret the inline CSS style attributes of dynamically loaded
elements in all browser. When this <div> is refreshed it will not have a display attribute of none
so it should be shown on the page, but most browsers will remember that the <div> was hidden
and won’t make it visible again. Instead, it is necessary to use afterFunc to change the display
attribute of the <div> explicitly.

Drag and Drop

Drag and Drop > ¢

T-Shirt (+)

Coffee Mua (+)

Mouse Pad (+)
Empty Cart. Add an item
to the Cart by dragging it
here.
Remove items from the

cart by dragging them
here.

One of the most impressive examples from the script.aculo.us library is the drag and drop
functionality. It is possible to make any HTML div a draggable object and any other div a drop
target. Some Web sites are now using this technique for shopping carts so that users can simply
drag items into their cart rather than having to click on links.

AJAX Asynchronous JavaScript and XML — A56

Lasso Summit 2006 — Manual AJAX Asynchronous JavaScript and XML

The drag and drop example starts as a simple shopping cart interface consisting of two <div>s.
The first has a list of items and each item has a + button which calls a URL with an action and
item to add an item to the cart. The second div lists items in the cart and has +/- buttons for
changing the quantity of items in the cart and an x button for removing items from the cart.

index.lasso?page=dragdrop&action=add &item=nu_one

In order to make elements draggable the function nu_decorate() from the “ajax.js” file is called
at the bottom of the page (this function must be called after the <div>s that it decorates have
already been defined). This function calls several functions from the script.aculo.us library to
create draggable items and drop targets.

Draggables are created by simply referencing their ID in the Draggables() creator function. Each
item from the store is marked as draggable and the nu_cart_draggables() function marks each
item which is contained in the cart as draggable as well.

new Draggable(‘nu_item one’, {revert:true});
new Draggable(‘nu_item two’, {revert:true});
new Draggable(‘nu_item three’, {revert:true});
function nu cart draggables()

if (document.getElementById(‘nu cart one’))

new Draggable(‘nu cart one’, {revert:true});
if (document.getElementById(‘nu_cart two’))

new Draggable(‘nu cart two’, {revert:true});
if (document.getElementById(‘nu cart three’))

new Draggable(‘nu cart three’, {revert:true});

Droppables require that the ID of the drop target be identified as well as the class of draggable
item that the drop target should accept and the function that should be called after each item is
dropped on the cart. The function in this case is Lasso.includeTarget() with the target of “nu_
content”, args generated by the + link for the item, and the function nu_cart_draggables() called
after the dynamic refresh.

Droppables.add(‘nu_cart’,
{
accept:’item’,
onDrop:function(element){
Lasso.includeTarget(‘nu_content’,
{args: document.getElementById(element.id + ‘ add’),
afterFunc: nu cart draggables});
}
s

A similar call is used to make the trash a drop target for draggable items in the class “cart” which
uses args generated bythe x link for the cart item.

Droppables.add(‘nu_trash’,
{
accept:’cart’,
onDrop:function(element) {
Lasso.includeTarget(‘nu_content’,
{args: document.getElementById(element.id + ‘ rem’),
afterFunc: nu_cart draggables});

AJAX Asynchronous JavaScript and XML — A57

Lasso Summit 2006 — Manual AJAX Asynchronous JavaScript and XML

Amazingly, that is all the JavaScript required. Now, dragging an item from the “Items” div to the
“Cart” div works the same as clicking the + link next to an item. If an item is already in the cart
then its quantity is incremented. Items which are dragged to the trash are simply removed from
the cart.

The cart can be easily customized by changing the look of the three div’s. The items can be
enhanced with product pictures. The cart could show the quanitity of items visually. The trash
can be made to look like an actual trash can.

For backward compatibility the +/-/x buttons can be used to perform the same basic operations
in a browser that does not support JavaScript.

Dynamic Update

The contents of this panel
is fetched dynamically
each time the title is
clicked.

The time and date are
12/14/2005 14:47:48

The content of this panel is
updated every second.

This example shows two methods of dynamically refreshing the contents on a page. Each
example shows the current date/time within a small panel. The upper panel is refreshed when the
title is clicked. The lower panel is refreshed automatically every second.

The upper panel has the following basic structure. An onclick handler is added to the title div so
that it functions like a clickable link. Lasso.includeTarget() is used to refresh the lower div. Note
that the “args” option is generated simply as target=theta_content.

<div style="background: blue;">
<div id="theta title" onclick="Lasso.includeTarget(‘theta content’,
{args: ‘target=theta target’}); return false;">Click to Refresh</div>
<div id="theta content" style="background: white;">
The contents of this panel is fetched dynamically
each time the title is clicked.
</div>
</div>

Within the “ljax.lasso” file this action parameter “target” is checked for the value “theta_target”
and a special XHTML fragment is created with the following content. This demonstrates how the

AJAX Asynchronous JavaScript and XML — A58

Lasso Summit 2006 — Manual AJAX Asynchronous JavaScript and XML

“Jjax.lasso” file can quickly serve just the content required for a dynamic update without loading
the rest of the site.

‘<div id="theta content" xmlns="http://www.w3.0rg/1999/xhtml">";
‘The time and date are’;
‘
'" + date->(format: ‘%D %T');

‘</div>";

The lower target uses a JavaScript setTimeout() function to schedule an update to run every
second. The function eta_refresh() checks if an element with ID “eta_content” is contained
on the page. If it is the contents is updated using Lasso.inclueTarget() and the function is

rescheduled to run a second later (1000 milliseconds). Otherwise, the function simply exits.

function eta refresh()

if (document.getElementById(‘eta content’))
{
Lasso.includeTarget(‘eta content’, {args: ‘target=eta target’});
window.setTimeout(“eta refresh()",1000);
}
}

These techniques could be used to create a section of a site which is updated each time it is
clicked to provide a random “fortune”, to provide the answer to a question, or to allow the user
to check on the progress of a background activity. The timed version could be used to poll a site

for a dynamic status message periodically or to display the ongoing progress of a background
activity.

Panel Collapse

Panel Collapse >

This is a collapsing panel.
Click on the title to make
the panel collapse and

again to expand it again.

The title of this panel
changes as it collapses or
expands.

This example is a script.aculo.us technique. It shows how to create panels on the page which
can be opened and closed by clicking on the title. The panels are animated as they open or close
providing good visual feedback for the site visitor.

AJAX Asynchronous JavaScript and XML — A59

Lasso Summit 2006 — Manual AJAX Asynchronous JavaScript and XML

The first panel appears to roll up into the title of the panel. The panel is defined as follows. The
onclick hander in the title calls a function beta_blind() which is defined in the “ajax.js” script
file.

<div style="background: blue">
<div onclick="return beta blind();">Collsapsing Panel</div>
<div id="beta content" style="background: white">
This is a collapsing panel. Click on the title to make the panel collapse
and again to expand it again.
</div>
</div>

The beta_blind() function is defined as follows. It finds the div with ID “beta_content” and then
uses a pre-built script.aculo.us effect to hide the div using an animated effect. Once the div is
hidden its height is “Opx” and calling the function again will show the div again.

function beta blind()

{
var beta content = document.getElementById(‘beta content’);
if (beta content.style.height != “Opx")
new Effect.BlindUp(beta content);
}
else
{
new Effect.BlindDown(beta content)
}
return false;
}

The second panel both rolls up and fades to blue. This is accomplished in the gamma_blind()
function by combining two pre-built script.aculo.us effects.

new Effect.BlindUp(gamma content);
new Effect.Fade(gamma content);

The third panel also changes the title of the panel when it is expanded or contracted. This is
accomplished in the delta_blind() function by changing the innerHTML property of the “delta_
title” div.

var delta title = document.getElementById(‘delta title’);

if (delta_title)
delta title.innerHTML = ‘Collapsed’;

These effects can be used to create a page which has revealable content. The title of each panel
could be a summary and the details can be shown only if the panel is expanded.

AJAX Asynchronous JavaScript and XML — A60

Lasso Summit 2006 — Manual AJAX Asynchronous JavaScript and XML

List Reorder

List Reorder > This example co

e First Element
e Second Element
e Third Element

e First Element
e Second Element
e Third Element

e Fourth Element
e Fifth Element
e Sixth Element

This example is a script.aculo.us technique. It shows how to create re-orderable lists. The site
visitor can re-order the list in the top panel and can drag items from one list to the other in the
next two panels. The third part is a sentence which is re-orderable.

The panels are all made re-orderable by the function list_decorate() in the “ajax.js” page. The
top panel is made sortable by the following code. The containment parameter specifies that only
elements from within “rho_list” can be dragged within the list. The onChange handler logs the
new value of the list (and could be used to initiate a database operation, etc.). The onChange
function calls Lasso.includeTarget() to have Lasso log the new order of the list.

Sortable.create(‘rho list’,
{containment:[‘rho list’],
onChange:function(element){
Lasso.includeTarget(‘’, {args: ‘target=none&log=rho:’ +
list order(‘rho list’)});}});

The next two panels are made sortable by the following code. The containment parameter her
specifies both lists. This allows items to be dragged from one list to the other. The onChange
function calls Lasso.includeTarget() to have Lasso log the new order of the list.

Sortable.create(‘sigma list’,
{
containment:[‘sigma list’,’tau list’],
onChange:function(element){
Lasso.includeTarget(‘’, {args: ‘target=none&log=sigma:’ +
list order(‘sigma list’)});
}

b

Sortable.create(‘tau_list’,

AJAX Asynchronous JavaScript and XML — A61

Lasso Summit 2006 — Manual AJAX Asynchronous JavaScript and XML

{
containment:[‘sigma list’,’tau list’],
onChange:function(element){
Lasso.includeTarget(‘’, {args: ‘target=none&log=tau:’ +
list order(‘tau list’)});
}

1

The third part contains a sentence whose words are re-orderable. The new sentence is logged each
time it is changed. The or-orderable element in this case are span tags. The onChange function
calls Lasso.includeTarget() to have Lasso log the new order of the list.

Sortable.create(‘upsilon list’,
{
containment:[‘upsilon list’],
tag:’span’,
onChange:function(element){
Lasso.includeTarget(‘’, {args: ‘target=none&log=' +
document.getElementById(‘upsilon list’).innerHTML.replace(/<\/?span.?>/gi,’")});
}
1)

This can be used to have the user prioritize elements on a site or to move users between groups.
The Lasso.includeTarget() call could perform a database or session operation to store the new
value of the list rather than simply logging the new order.

Auto-Complete

This example is a script.aculo.us technique. It shows how to create an auto-completing text input.
The text input is named “zeta_input” and is immediately followed by a “zeta_complete” div
which is initially empty.

<input type="text" id="zeta input" name="test" value="" />
<div class="complete" id="zeta complete"></div>

Auto-complete is enabled by calling the zeta_decorate() function in the “ajax.js” file. This
function uses the script.aculo.us Autocompleter object with a list of explicit terms to be used in
the auto-complete div when it is shown.
new Autocompleter.Local(‘zeta_input’, ‘zeta_complete’,
[‘one’,"two’, three’,’four’,’ five’,’six’,'seven’,’eight’,’nine’,"ten’],

{});

This example could be extended with a list of words generated from site-specific data. The
script.aculo.us library also offers several different Autocompleter classes which can be used in
conjunction with live data fetched through AJAX methods.

AJAX Asynchronous JavaScript and XML — A62

Lasso Summit 2006 — Manual AJAX Asynchronous JavaScript and XML

Details

This section contains more detailed documentation of some of the functions used by the AJAX
examples.

Lasso.includeTarget(target,options)

The function requires one parameter which is a target (or array of targets) to fetch. Additional
options can be specified in a second parameter (described below). The function uses
XMLHttpRequest to call a file LJAX.lasso on the current site with a series of -Target=target
parameters.

The LJAX.Lasso file is expected to return a valid XHTML fragment surrounded by <ljax>
... </ljax> tags. This fragment is parsed and any sub-elements which have an ID are used as
replacements for elements with the same ID from the current Web page.

The most common option is “args” which allows any anchor tag or form to be specified. The URL
or form parameters of the specified element are passed to the LJAX.Lasso file. Alternately, a string
of parameters can be specified. This option allows Lasso.IncludeTarget to essentially simulate a
link or form submit.

The option “afterFunc” allows a JavaScript function to be named which will be called
immediately after any matching XHTML elements have been replaced. The option “argsoverride”
allows specific values to be sent in place of the actual parameters from the link or form specified
as “args”.

Finally, the option “func” allows a custom function to be used in place of the default behavior of
replacing elements with matching IDs. A second optional “param” is passed to the function when
it is called.

The Lasso.IncludeTarget() function is typically called in an onclick handler for an anchor tag or
in an onsubmit handler for a form tag. In either case the anchor or form can be passed as “this”
for the “args” option. The function should be followed by “return: false;” in order to avoid the
natural behavior of the tags (reloading the page).
<a href= [response filepath]?name=value"
onclick="Lasso.IncludeTarget(‘target’,{args: this}); return false;">
</.;>
<form action="[response filepath]
onsubmit="Lasso.IncludeTarget(‘target’,{args: this}); return false;">

<input type="hidden" name="name" value="value" />
</form>

[LJAX_Target] ... [/LJAX_Target]

These tags mark how an area of a Web page should be served. Areas can be marked to serve when
no LJAX target has been specified, when any LJAX target has been specified, or when a specific
LJAX target has been specified.

[LJAX Target: ‘target’] ... [/LJAX_Target] will serve the contents only when the specified target
is being asked for through an LJAX request. The contents will not be served for normal HTML

AJAX Asynchronous JavaScript and XML — A63

Lasso Summit 2006 — Manual AJAX Asynchronous JavaScript and XML

requests. An array of targets can also be specified as in [LJAX_Target: (Array: ‘targetl’, ‘target2’)]
... [/LJAX Target].

[LJAX_Target: -NoTarget] ... [/LJAX_Target] will serve the contents only when an LJAX target
has not been requested. This is most useful for HTML-only parts of the Web page including the
head elements, title, stylesheet, etc. -NoTarget can be combined with a specific target to serve the
contents when either that target or no target has been requested.

[LJAX_Target: -AnyTarget] ... [/LJAX_Target] will serve the contents when any LJAX target has
been requested. This is most useful for LJAX-only parts of the page.

The most common form of the tag is [LJAX_Target: (Array: ‘target]’ target2’), -NoTarget] ...
[/LJAX_Target]. This form serves a portion of the page when any of the targets within the array
or no target is specified. This marks an area of the page so it will be served as part of the initial
HTML Web page and also as part of an LJAX request for an XHTML fragment.

Note that nested [LJAX_Target] ... [/LJAX_Target] tags can be specified, but every outer tag must
share at least one target with the inner tags. The following example works fine since “target1” is
specified both in the outer tag and the inner tag.

[LJAX Target: (Array: ‘targetl’,’target2’)]
[LJAX Target: ‘targetl’]

[/.Il_'JAxiTarget]
[/LIAX Target]

However, in the following example the inner contents will never be served at all since a call to
“target3” will cause the contents of the outer tag to be skipped and the code to check whether the
inner tag should be served will never be seen by Lasso. If “target]” or “target2” is requested then
the contents of the inner tag won’t be served anyway.

[LJAX Target: (Array: ‘targetl’,’target2’)]
[LJAX Target: ‘target3’]

[/.I._.JAxiTarget]
[/LJAX Target]

LJAX.Lasso

The LJAX lasso page must be created for each site which wants to make use of the
Lasso.includeTarget() JavaScript function. The minimum implementation of an LJAX.Lasso must
ensure that it be served as an XHTML fragment with appropriate XML header and content-type.
The outermost XML tag in the file should be a simple <ljax> ... </ljax> tag. And, the file should
set the variable “ljax” to be true.

<?xml version="1.0" encoding="UTF-8"?>

[content type(‘text/xml; charset=UTF-8")]

[var(‘ljax'=true)]
<ljax>

</.{jax>

AJAX Asynchronous JavaScript and XML — A64

Lasso Summit 2006 — Manual AJAX Asynchronous JavaScript and XML

The contents of the <ljax> ... </ljax> tags should be one or more XHTML fragments tagged with
appropriate IDs. The Lasso.includeTarget() function will scan for all IDs in the file and replace
like elements in the current HTML page with their contents.

One of the easiest ways to create an LJAX.lasso file (and the method the AJAX example uses for
the most part) is to use the same site includes in the LJAX.lasso file as in the actual site, but to
mark up the site with [LJAX_Target] ... [/LJAX_Target] tags.

However, it is also possible to craft all of the XHTML within the LJAX lasso file specially. For
some applications this may result in a speed boost, but at the cost of maintaining separate code
bases which perform much the same tasks.

Browser Support and Backward Compatibility

The LJAX method and script.aculo.us methods (and included Prototype library) have all been
tested in the most recent versions of Safari 2 for Mac OS X, FireFox for Mac OS X and Windows,
and Internet Explorer 6 for Windows. The methods may be supported in additional standards
compliant browsers as well.

Many of the methods are backward compatible with older browsers and there are notes
throghout this paper and the provided code which show how to provide the best backward
compatibility possible. In particular, the drag and drop and menu navigation examples are fully
backward compatible.

If the XMLHttpRequest method isn’t supported by a browser then the Lasso.includeTarget() tag
will fail. If the browser doesn’t support JavaScript (or JavaScript is turned off) then the callback
in the link, div, or form will simply never be called and the mouse click will be recorded as a
normal Web browser action.

Examples which are not backward compatible include the re-orderable lists, the expanding and
collapsing panels, and the text auto-complete. In general, these features should be incorporated
into a site in such a way that their loss in older browsers does not cause the site to be completely
unusable.

AJAX Asynchronous JavaScript and XML — A65

Lasso Summit 2006 — Manual AJAX Asynchronous JavaScript and XML

Additional Resources

These are links to the script.aculo.us Framework and Prototype JavaScript Library. Many of the
examples in this paper are built using these tools.

script.aculo.us Framework - <http://script.aculo.us/>
Prototype JavaScript Library - <http://prototype.conio.net/>

These are links to the Web standards for XHTML, CSS, and a JavaScript resource.

XHTML - <http://www.w3.0rg/MarkUp/>
CSS - <http://www.w3.0rg/Style/CSS/>
JavaScript - <http://wp.netscape.com/eng/mozilla/3.0/handbook/javascript/>

Finally, these are some useful Web links which you probably already know.

Lasso Professional - <http://www.omnipilot.com/lasso>
Lasso Examples - <http://www.omnipilot.com/addons>
Lasso Reference - <http://reference.omnipilot.com>

Lasso Tips of the Week - <http://www.omnipilot.com/totw>
OmniPilot Software - <http://www.omnipilot.com>

AJAX Asynchronous JavaScript and XML — A66

Lasso Summit 2006 — Manual Covering the Basics

Covering the Basics Roundtable

Miles
INTRODUCTION: EMAIL LOG CREATION: A CASE EXAMPLE

Where would the world be without email. If it weren't for email, [would be outta business in
short order. As would most of you. Today's tip is not a retrospective of miles musings about
email. No in fact its actually about the email capabilities of Lasso 6, 7 and now 8! But rather
than feed you what you already know about the tags, assuming you do...let's take a slightly
different tack. And remember folks...you gotta pay for the soup first: TANSTAAFL!

Today's Lasso Tip is about sending log files to an end user. It includes some sample (read that as
FREE) code for you to play with and to use, and it includes a descriptor email to go with. Trust
me this is a must read today. Not as cohesive as my previous LTfN but definitely a readworthy
piece of text. Besides, remember ITS FREE!

Moving on.....

Lasso has some amazing capabilities and one of them is its ability to use email as an effective
method to notify users, delayed feedback if you will. To send out everything from username/
password pairs to PDF coupons!

Until rather recently (within the last 3 years Im talking), Lasso's email capabilities by today's
standards (and even of the day itself) was limited to just text, and not even HTML text at that,
not unless you tweaked the hell out of it, it was just text. Suffice it to state that Lasso's climb
from email text to email superiority has been long and slow for one reason or another. Time was
that if you got Lasso to email at all it was a miracle and you thanked your lucky stars (L2 days).
Stepping into the wayback machine for a second, I refer to the Lasso 3 days when you'd set up a
msg to get sent out under certain conditions and if Lasso couldn't talk to its intended mail server,
after 3 attempts it would drop the issue entirely. Lasso 3 would go so far as to make a log entry
like this:

05/22/03 14:33:03 ERROR: -104. Failed 3 times to connect to email host.

And that's about as far as you got. And if you got that, you were doing good, at least you knew
Lasso TRIED, whether or not the msg actually contained anything was another matter entirely.
Today Lasso is much much much better at telling you that an email wasn't sent for a variety of
reasons....it doesn't just drop the msg, but tells you exactly what error response it got back from
the email server, and instead of 3 tries it stops after the 5th, and instead of discarding the msg, it
holds it in memory until YOU do something! Trust me my friends, Lasso has come a long way in
terms of email.

Today Lasso can send not just text, but HTML mail as well, and of course it can send
attachments...DUH! However I'm willing to wager that you've looked at LP8 and gotten about
half way down on the page of specs and said, "WAIT! Hold the phone, it does WHAT ? It

will EVEN check a POP3 server ¢ Where's my CREDIT CARD ?!2121212". For those of us that
have been with Lasso since v1.0 (I was there with 1.1), we understand just what a big deal that

Covering the Basics — B67

Lasso Summit 2006 — Manual Covering the Basics

is...however if you're coming from another platform. That's a different story altogether. When
I saw that LP8 actually will check a POP server for mail, no 3rd party plugins, no tweaking, no
fiddling, just straight forward -> GET THE MAIL! I got out my credit card. That's pretty cool
stuff when you sit and think about it. That puts Lasso on par with PHP, ASP or ColdFusion.

Of course all three of those had email connectivity about 3 years ago, but better late than never at
all I say! (smile)

Ok so Lasso's history with email hasn't been shall we say stellar but its here now and let's take
advantage of that for our own nefarious purposes! (giggle)

PART ONE: EMAIL BASICS

Before we get to the fun stuff...the code, there are some rules of the road, Lasso does require that
you actually set an SMTP host, however you can specify in the tag itself the host that will be used
to send your msg. Because I run a B2B ISP/ASP and my own CMS, I bypass the requirement of
having to set the host SMTP. My reason is that because 99 % of the apps Im running I wrote,
but for different domains, and each of those domains use their own mail host, not mine, so its
pointless to actually set a host, when the individual tag will allow me to set it, that and because
of the fact I am running multiple domains off my servers requires that each site have its own
host requirements. Another requirement is that you can't send anonymous email. I know that
sounds DUMB but there's some validity to it. You actually have to have a valid host to send
from, however that host does NOT need to be a valid domain, it can be an IP address. I'll tell
you this much though, as anyone who hosts their own stuff will tell you, in today's world sending
email out via IP address just isn't gonna fly, its just not gonna happen, mostly because in today's
world most spam protection routines prevent that kind of mail from ever getting to an intended
recipient by IP address alone. Another rule of the road is that Lasso does actually have an upper
limit to the amount of data you can send via email, however you'll probably NEVER reach it, but
know that there is a limit. Which is to say, try not to send out dissertations, just the facts please.

On to the fun stuff...

Sending an email with Lasso is pretty simple stuff. Time was it was 5 subtags as an inline. Today,
its a single tag with a few requirements. For those of you upgrading your solutions, there is ONE
major change (which was made for security reasons so I gather) the BODY of the msg is NOW an
include. So lets take a gander at the email tag itself:
[email send:

-host="'domain.com’,

-to='info@domain.com',

-from='site@domain.com',

-subject="'MY SUBJECT',
-body=(include:'email.txt"')]

1.) -HOST, this is your sending host. Or the host that will be used to

relay this msg. Lasso doesn't actually send out the msg, the host
does that. Keep that in mind when sending MASSIVE amounts of email!

2.) -TO is who you're sending this to...pretty simple.

Covering the Basics — B68

Lasso Summit 2006 — Manual Covering the Basics

3.) -FROM is WHO the msg is from. There's a caveat here that you need
to be aware of, which we'll get to in a second but be aware that there's
something we'll revisit later on.

4.) -SUBJECT line....pretty straight forward, but again we're going to revisit
this when we kick it up a notch.

5.) -BODY, here's the actual msg. And note that the its a FILE INCLUDE.
The actual body of the msg is contained elsewhere...

Let's break this down a bit....these are the 5 basic subtags you need in order to get Lasso to send a
msg. However, there's a whole lot there that you're probably not seeing. Not the least of which is
this is a single tag, it can be modified to meet your needs, and that the actual body of the msg can
contain Lasso directives!

Which leads me to the actual INCLUDE itself....this is the result of log file that we will send out
later on, its the file include that is the aggregate result of a (what you will see) long series of SQL
calculations.

Good Morning,

Here is your daily web log for [date format: ($v_today), -format='%A, %B %-d %Y'].

Total Hits: [$v_hits]

Distinct IP addresss: [$v ip].

Hits By Platform

MAC: [$v_mac]

PC: [$v pcl]
UNIX: [$v other]
Hits By Browser Type
msie (mac/pc): [$v_mmsie]/[$v msie]
other: [$v other]
Hits By Pagel[records: -inlinename='sql pagecount']
[field:'page name'] [field:'page count'] [field:'ref count'][/records]

your report in excel, go here -> [$v filename xls]

your report in txt, go here -> [$v filename txt]

Thank you.

Your Web Server

Most of this stuff is useless to you, however note that the include is full of Lasso directives

and defined variables, and not to mention an INLINE command! So what is the email you're
looking at ¢ Well its part of a larger system that computes log stastics. I didn't like the apache
logging routine so I wrote my own. Every time someone hits a page in my CMS it logs to a client
database. That data is calculated via a series of SQL statements and then put into variables

and then placed here in their final form. What is of further note is that in the course of a day
thousands of hits are registered across my client websites, and this email is sent out in a matter
of seconds to all my clients by midnight. It takes about 3 seconds to compute the hits for the day
and then to send out this msg. And its done automatically via an event trigger!

I digress, the only reason Im telling you all this is to show you what can be done with the simplest
of email tags!

PART TWO: TAKIN IT TO THE NEXT LEVEL!

So we've got the basics down, there are a few things we need to be aware of...like for instance
that because Lasso isn't actually sending out these msgs itself, but the email host is, there are

Covering the Basics — B69

Lasso Summit 2006 — Manual Covering the Basics

situations (because of the world we live in) where you need a method to VALIDATE who is
actually sending the msg that you're wanting to send, and for that reason Lasso has built into it
an authentication routine to login to an SMTP server and validate the sending msg;:

[email send:

-host="'domain.com’,

-port= 1-OPTIONAL,

-username= 2-OPTIONAL,

-password= 3-OPTIONAL,

-to='info@domain.com',

-from='site@domain.com',

-subject="'MY SUBJECT',
-body=(include:'email.txt')]

1.) With the advent of LP8 you can NOW specify the PORT your mail server will
respond on. In previous versions LP6/7 this wasn't possible, unless you
changed the start up lassoapp. Lasso had port 25 hard coded into itself.
So you'd have to modify it to allow for another port.

2.) username. This is the username of the SENDING account! In the case of EIMS,
that sending account is: user%domain.com.

3.) password. this is the password of the username above.

Having got past the inane parts of the msg structure...let's move on to the actual FUN parts

of this...the HTML mail...so how do you send plain text AND HTML mail at the same time ?
Again with the advent of LP8, sending HTML mail is pretty damned simple...you see there's a
reason why you upgraded (and no its not because of the hottie on the Lasso box, wait, there is
NO hottie on the Lasso box......OP! Hello let's get with the program here...as software developers
its a requirement that you throw some scantily clad woman on the box to signify that this is
sexy stuff...and that by buying your product we are buying sex sex sex...oh and a really cool app
server...AHEM, I digress).

Adding HTML to the mix is this simple:

[email send:
-host='domain.com',

-port= 1-OPTIONAL,
-username= 2-OPTIONAL,
-password= 3-0PTIONAL,
-to='info@domain.com',
-from='site@domain.com',
-subject="'MY SUBJECT',
-body=(include:'email.txt'),
-html=(include:'email html")]

How easy is that. One caveat when sending HTML mail, is that any images you wish to embed
must be in absolute format, ie: http://www.youdomain.com/images/xxxXxx.jpg

What will get sent out is actually a two part msg. Well three if you really sit and think about it.
The msg will have to primary parts one in MIME format and the other in TEXT. So what's the
3rd part, the headers which are defining the msg itself.

Covering the Basics — B70

Lasso Summit 2006 — Manual Covering the Basics

Lastly, something to keep in the back of your mind, is that in the Admin for Lasso 5/6/7, the
email sweep was automatically set to 300 seconds, that means that every 5 minutes, Lasso would
check the EMAIL queue for NEW msgs that had to go out. You could of course change this to
be whatever you want it to be. With LP8 things are just a lil different. You have more options in
the form of an email delay between sweeps as well as space for SMTP AUTH User/Pass pair, and
space for a default port.

PART THREE: ITS IN THERE!

Lasso 5 - 8 has some wonderful tools in it, and one of those tools is the event manager. This is
how we're going to accomplish sending out our LOG files to an end user. Scheduling an event to
happen at a specific date, time, and using a specific URL is pretty damned easy, a lot easier than
makin an appointment to go see a dentist and a helluva lot less painful. What does this tip about
EMAIL have to do with EVENTS ? The long story short is that there will be times in developing
your applications where you're not going to want to send a msgs immediately or during the next
email sweep.

In the email above that Im sending out to my clients every morning, the email is the RESULT
of an event, and the event as I said earlier is the process of a VERY LONG laundry list of SQL
calls and calculations to determine browser type, file sizes, distinct IPs, etc....it then compiles all
of that and sends out a msg to the end user to display their morning report...which most clients
absolutely LOVE.

There is one tiny hiccup to this process running form another domain OTHER than the client's
domain. And it will require you to open up the compatibility.lasso file inside your Lasso
Documentation > 3-Language Guide > LassoApps > Startup folder. Find the compatibility file
and make 3 modifications to the LOG tag. You're going to comment out the following lines, like
so (lines 115 - 118):

//fail if: # file->(beginswith: '///'), -9956, '[Log] Cannot write to fully qualified

paths';
//fail if: # file->(endswith: '/'), -9956, '[Log] Cannot write to a directory';

//fail _if: (# file >> '//'), -9956, '[Log] Cannot write to fully qualified paths';
//fail _if: (# file >> '..'), -9956, '[Log] Cannot use .. in log paths';

You're doing this so that the log tag will be able to write to any path. When you're done,
recompile the Startup folder, and then replace the resulting app with your new startup app, then
restart lasso. Next up is you'll have to enable permissions for the admin user to run the log tag.

Also you'll have to add .txt as a viable file tag that Lasso can manipulate (as well as, XLS...excel
files).

The Event in question is below....Ive removed some of the more esoteric items and aggregates...but
you'll get the general gist:

<?LassoScript
// MAGICMILES SOFTWARE LOG REPORTING. © 2006 magicmiles software.
//

// this is a site report for domains on XXXXXXXXXXXXX.com
// each domain is run in 15 second intervals as an event from the
// lasso admin.

// It sends a report to the users which is culled from the sql statements below for
// today's date, each record in the counter db ($v_db connection) below is uniquely

Covering the Basics — B71

Lasso Summit 2006 — Manual Covering the Basics

tagged with
// their unique site id marker
include: ‘'insert-dbvalues.inc';

var: 'id' = (action param:'id'); //passed site id variable
var: 'v_today' = (date format:(server date), -format='S%Y-%m-%d'); //date
variable
inline: ($v_db connection) 'auth siteid'=($id), -search;
var: 'v_domain' = (field:'auth domain'); //domain to run from and to
var: 'db name' = (field:'auth db'); //database name
var: 'tb name' = (field:'auth tb'); //table name
var: 'site id' = (field:'auth _siteid');
//site _id matches database field name of same name
var: 'users' = (field:'auth users'); //users to send report to

var: 'v user'
var: 'v_pass'
/inline;
//counts page name values
var:'sql pagecount'=(string);
$sql _pagecount +='SELECT DISTINCT page name, count(page name) as page count FROM '
+ ($tb _name) + ' WHERE site id = "' + ($site id) + '"';
$sql_pagecount +=' AND date time LIKE "%' + ($v today) +'%" GROUP BY page name
ASC';
//counts referrer hits
var:'sql pagereferrer'=(string);
$sql _pagereferrer +='SELECT DISTINCT referrer url, count(referrer url) as ref count
FROM ' + ($tb name) + ' WHERE site id = "' + ($site id) + '"';
$sql_pagereferrer +=' AND date time LIKE "%' + ($v_today) +'%" GROUP BY referrer_
url ASC';
//counts page ip hits
var:'sql _pageip'=(string)
$sql_pageip +='SELECT DISTINCT ip_ address FROM ' + ($tb name) + ' WHERE site id =
"'+ ($site id) + '"';
$sql_pageip +=' AND date time LIKE "%' + ($v_today) +'%" GROUP BY ip address';
//similar to pagecount
var:'sql hits'=(string);
$sql_hits +='SELECT a_browser FROM ' + ($tb name) + ' WHERE site id = "' + ($site_
id) + '"';
$sql_hits +=' AND date time LIKE "%' + ($v_today) +'S"';
//counts macintosh platform
var:'sql pagemac'=(string);
$sql_pagemac +='SELECT a browser FROM ' + ($tb name) + ' WHERE site id = "' +
($site id) + '"';
$sql_pagemac +=' AND date time LIKE "%' + ($v_today) +'S"';
$sql_pagemac +=' AND a browser LIKE "%MAC%"';

(field:'auth username'); //username
(field:'auth password'); //password

//counts windows platform

var:'sql pagepc'=(string);
$sql_pagepc +='SELECT a browser FROM ' + ($tb name) + ' WHERE site id = "' +
($site id) + '"';
$sql_pagepc +=' AND date time LIKE "%' + ($v today) +'%"';
$sql_pagepc +=' AND a browser LIKE "%SWINS"';
//counts unix/other platform
var:'sql pageother'=(string);
$sql_pageother +='SELECT a browser FROM ' + ($tb name) + ' WHERE site id = "' +
($site id) + '"';
$sql_pageother +=' AND date time LIKE "%' + ($v _today) +'%"';
$sql_pageother +=' AND a browser NOT LIKE "%WIN%" AND a browser NOT LIKE
"%SMACS"";

//counts ie-windows browser
var:'sql _pagemsie'=(string);
$sql_pagemsie +='SELECT a browser FROM ' + ($tb name) + ' WHERE site id = "' +
($site id) + '"';

$sql_pagemsie +=' AND date time LIKE "%' + ($v today) +'%"';
$sql_pagemsie +=' AND a browser LIKE "S%MSIES"';
$sql_pagemsie +=' AND a browser LIKE "SWINS"';
$sql_pagemsie +=' AND a browser LIKE "SWINDOWSS"';

Covering the Basics — B72

Lasso Summit 2006 — Manual Covering the Basics

//counts ie-mac browser

var:'sql _pagemacmsie'=(string);
$sql_pagemacmsie +='SELECT a browser FROM ' + ($tb name) + ' WHERE site id = "'
($site id) + '"';
$sql_pagemacmsie +=' AND date time LIKE "%' + ($v_today) +'%"';
$sql_pagemacmsie +=' AND a browser LIKE "%MSIES"';
$sql_pagemacmsie +=' AND a browser LIKE "%MAC%"';

|
+

//counts other browser
var:'sql pagebrowser'=(string);
$sql_pagebrowser +='SELECT a browser FROM ' + ($tb name) + ' WHERE site id = "' +
($site id) + '"';
$sql_pagebrowser +=' AND date time LIKE "%' + ($v _today) +'%"';
$sql_pagebrowser +=' AND a browser NOT LIKE "%SAFARI%"'
$sql_pagebrowser +=' AND a browser NOT LIKE "%NETSCAPES"';

$sql_pagebrowser +=' AND a browser NOT LIKE "%MSIES"';
$sql_pagebrowser +=' AND a browser NOT LIKE "%MAC%"';
$sql_pagebrowser +=' AND a browser NOT LIKE "SWIN%"';

//compiles all sql calls into inlines for variable processing.

inline: -inlinename='pagereport', ($v_db connection), -op='cn', 'date time'=($v_
today), 'site id'='xxxxxxxxx', -search;/inline;

inline: -inlinename='sql pagecount', ($v_db connection), -SQL=($sql pagecount);
error_currenterror; /inline;

inline: -inlinename='sql pagereferrer', ($v_db connection), -SQL=($sql
pagereferrer);/inline;

inline: ($v_db connection), -SQL=($sql pageip);var:'v_ip'=(found count);/inline;

), (

inline: ($v_db connection), -SQL=($sql hits); var:'v_hits'=(found count);/inline;

inline: ($v_db connection), -SQL=($sql pagemac); var:'v_mac'=(found count);/inline;

inline: ($v_db connection), -SQL=($sql pagepc); var:'v_pc'=(found count);/inline;

inline: ($v_db connection), -SQL=($sql pageother); var:'v other'=(found count);/
inline;

inline: ($v_db connection), -SQL=($sql pagemsie); var:'v _msie'=(found count);/
inline;

inline: ($v_db connection), -SQL=($sql pagemacmsie);var:'v_mmsie'=(found count);/
inline;

inline: ($v_db connection), -SQL=($sql pagebrowser); var:'v _browser'=(found count);/
inline;

inline: ($v_db connection), -SQL=($sql pagemb2); var:'v mb2'=(found count);/inline;
//this next section defines variables for the report values: date of report, and
logname files.
var:'v_subdate'=(string concatenate:'WEB LOG REPORT FOR: ', (date format:
($v_today), -format='%A, %B %d %Y'));
var:'v_logname txt'='///Library/WebServer/Documents/~"' + ($v_domain) + '/weblogs/
weblog-' + ($v_today)+'.txt';
var:'v_logname xls'='///Library/WebServer/Documents/~' + ($v_domain) + '/weblogs/
weblog-' + ($v_today)+'.xls';
var:'v _filename txt'='http://www.' + ($v_domain) + '.com/weblogs/weblog-' + ($v_
today) +'.txt';
var:'v _filename xls'='http://www.' + ($v_domain) + '.com/weblogs/weblog-' + ($v_
today) +'.xls';
//this next section actually creates the reports in the users directory in two
formats: text and excel!
log: ($v_logname txt)
$v_subdate + '\r\r';
string uppercase: ($v_domain) + '\r\r';
"#' + '\t' + 'page' + '\t' + 'date' + '\t' + 'ip' + '\t' + ‘'domain' + '\t' +
'browser' + '\t' + 'referrer url' + '\n';
records: -inlinename='pagereport';
(Loop _count) + '.)' + '\t' + (field:'page name') + '\t' + (date format:(field:
'date _time'), -format='%h:%M %p') + '\t' + (field:'ip address') + '\t' + (field:
'domain_address') + '\t' + (field:'a browser') + '\t' + (field:'referrer url') + '\r';
/records;
/log;

Covering the Basics — B73

Lasso Summit 2006 — Manual Covering the Basics

log: ($v_logname xls);
$v_subdate + '\r\r';
string uppercase: ($v_domain) + '\r\r';
"#' + '\t' + 'page' + '\t' + ‘'date' + '\t' + 'ip' + '\t' + ‘'domain' + '\t' +
'browser' + '\t' + 'referrer url' + '\n';
records: -inlinename='pagereport';
(Loop _count) + '.)' + '\t' + (field:'page name') + '\t' + (date format:(field:
'date _time'), -format='%h:%M %p') + '\t' + (field:'ip address') + '\t' + (field:
'domain_address') + '\t' + (field:'a browser') + '\t' + (field:'referrer url') + '\r';
/records;
/log;

//this next section sends the file report.inc to ($users) variable.

email send:
-From="XXXXXX@XXXXXXXXXX.com’,
-to=($users),
-bCC="XXXXXX@XXXXXXXXXX.com’,
-hoST="XXXXXXX%XXXXXXXX.COM| [XXXXXXXXXX||XXXXXXXXXXX.com’,
-Subject=($v_subdate),
-Body=(include: ‘report.inc’);
email send:
-host="domain.com’,
-username=($v_smtp u),
-password=($v_smtp p),
-to=($users),
-from='site@domain.com’,
-subject=($v_subdate),
-body=(include:’'report.inc’),
-html=(include:’'report-html.inc’);
7>

If you can decypher all of that, skipping the SQL parts, you'll note a few things not the least of
which is that there is nothing magical about what's being done here...absolutely NOTHING. One
thing to note is that because this app runs on both a LP6 server and an LP8 server I had to allow
for the proper language for the email send statement. Look at the host line for the commented
out LP6 code, note that its username||username||hostname, whereas in LP8 those values are
divided out. This logging tool also writes out an actual log file in two formats, txt and excel.

So how is this all run, by an event url, like so:

http://WWw.XXXXXXXXXXXXX.com/customersite.lasso?id =XXXXXX

In short this is a wonderful logging tool even if I do say so myself...and the best part is that you're
getting it for free. If you'd like the DB structure, Im happy to send it to you so that you can start
using it today.

Covering the Basics — B74

Lasso Summit 2006 — Manual Simplifying your coding life with custom types

Simplifying your Coding Life with Custom Types

Goran Tornquist

Introduction

In my other paper created for this Lasso Summit, I have described the benefits gained when
using custom types together with access to database records. The focus on this paper is to give
the foundation for discussions about general benefits about custom types and how they could be
implemented.

I have defined three custom types to introduce you to the benefits of custom types. They will be
briefly described by the following subtitles.

« What is the purpose of the custom type?
+ Member tags.

+ Examples of usage.
Which is the Faster? Custom Types or Custom Tags?

That is a question that has both a simple and a more elaborate answer. The simple, and generally
true answer is that custom tags are faster than custom types.

Everything comes with a price

Custom types come with two extra costs: extra development time to handle the general case
instead of the specific case, and inefficiency due to lack of optimization.

A custom type is a definition of a “thing” that has the attributes and the knowledge to
manipulate those attributes. Normally, optimizations are not present. They would require
information outside of the scope for the custom type. That would break the rule that says that
custom types (or classes as in other OOP languages) should be self-contained.

There’s more inefficiency as well. Lasso has to handle the encapsulation of the custom type
member variables and member tags. This requires some overhead, as every object — a created
instance of the custom type — does need a general preparation. To minimize this, there is the -
prototype keyword that can be used together with the definition of a custom type. When doing
this you tell Lassoscript that there is no code that needs to be executed at the time of the creation
of the object. In other words, there is no outside dependency that has to be accounted for. Using
-prototype, simply makes Lassoscript copy a ready-made template, which makes it almost as
efficient as the native types that are built-in into Lassoscript.

What is the Definition of Fastest Code? Quick and Buggy Code or Slower and Correct
Code?

If you feel challenged by this subtitle, please understand that I do not prefer OOP at all times.
There are a lot of cases where it does not apply for reasons of efficiency, complexity and
interchange with other languages — just to name a few. Now that you’ve read this disclaimer,
please proceed.

Simplifying your coding life with custom types — B75

Lasso Summit 2006 — Manual Simplifying your coding life with custom types

The purpose of OOP is to make a simplified and general abstraction of a certain entity that is
found in a solution. Almost every thing in this world appears more complex when we look a bit
closer at it. Custom types give you the possibility to create a complex operation that will look very
simple from the outside.

The question above is a rhetoric question with the assumption that it is easier to create bug free
code with custom types. Well-defined behavior can be tested through unit testing and therefore
we can predict the most of the results of the behavior. Also, since the code only relies on outside
information passed on through the member tags, we know that the consistency of the object is
preserved at all times.

Are Custom Types Cost Efficient?

The answer of the question above depends on the resources and the usage of the solution in a
whole. Which boundaries do you operate within? The two main factors are time and cost — and
both results in money in the end.

. If you have a lot of time before the solution needs to be there, then you can afford to create
optimized and specific code.

. If you can afford multiple resources working on the solution, then you will have a high
performance solution. Resources is regarded to be many developers working on the problem, or
many servers co-operating to deliver the solution.

Time and cost are often restricted by budgets or deadlines, and can be regarded as absolute in the
specific case. But there is actually one more factor that gives us the boundaries for the solution.
The quality of the solution as whole must not be negotiable, however completely bug-free code is
impossible and therefore there’s no such thing as an absolute value of the quality factor.

The main cost benefits from custom types can be found in code reuse and less quantity of bugs.
Full code reuse takes place when you can create a custom type for one solution, and you use it in
another solution without any changes. Whether you will be able to take advantage of full code
reuse or not, depends on the balance between the depth of investigation of the abstraction and
the cost (in time and resources) you that can afford.

Often there will be room for extension of the custom type, which will affect and benefit both
the old and the new solution. Obviously that demands that the extension does not violate the
boundaries of the custom type abstraction. If it does, then we have a back compability problem.

C_URL - a Custom Type for handling URL's

You find the custom type C_URL in the file “ctypes.inc” that comes with this paper.

What is the purpose of the custom type?

To deliver correct handling and evaluation of URL’s (or URT’s) as defined by W3C. Since this is a
simple example, the full purpose has not been fulfilled.

Member Tags

You use the custom type trough one of the following member tags. All getters will return a valid
value if the URL as a whole is considered valid.

Simplifying your coding life with custom types — B76

Lasso Summit 2006 — Manual

Simplifying your coding life with custom types

Member Tag

Purpose

getURL

Guaranteed to either deliver a working URL that is consistent
with the definition of a URL and the usage depending on the
supported protocol, or an empty string if the url is not valid.

setURL: 'url string’

Accepts a string that defines the URL, and stores it within the
object.

getProtocol

Returns the protocol part of the URL.

setProtocol:’protocol string’

Sets the protocol part of the URL with the given protocol string.

getHost

Returns the host part of the URL.

setHost: ‘host string’

Sets the host part of the URL with the given host address.

getPath Returns the path part of the URL.
setPath Sets the path part of the URL.
Examples of Usage
example a

var: 'homepage' = (C URL:

'http://www.cortland.se/summit/");

a: '
$homepage->getURL;

|<br. />|;

//example b

var: 'html' = 'getURL + '">';
Ib: |;

if: $homepage->getProtocol == 'mailto:';

$html += 'Send a mail';
else;

$html += 'Click here';
/if;
#html += '';
#html;
'
';
//example c
'c: '
$homepage->setProtocol:

'ftp:';

$homepage->setHost: 'ftp.cortland.se';

$homepage->getURL;
I<br. />I;

C_String - an Extension of the Native String Type

You find the custom type C_String in the file “ctypes.inc” that comes with this paper.

What is the purpose of the custom type?

Two purposes:

1. To prove the possibility of using strings that has been extended by use of inheritance.

2. To simplify code that manipulates the string — and thereby avoid bugs.

Comment: When the [String_CountFields] and [String_GetField] tags where deprecated, I

was forced to change my solutions in quite a few places to accommodate for the new and more
efficient [String->Split]. But as I was changing those, most of the time, there was not time and
resources available to change the structure of the code. Without a structure change, the benefits

of performance were missing. Also I found myself checking for just one field to be present, and

Simplifying your coding life with custom types — B77

Lasso Summit 2006 — Manual Simplifying your coding life with custom types

then continue with some processing. The code became more complicated and less readable,
which is a threat to future development and handling of bugs.

So, here they are again. Built with [String->Split], with the promise of low performance, but
simpler looking code.

Member Tags

You use the custom type trough one of the following member tags.

Member Tag Purpose

left: ‘length’ Returns a maximum of ‘length’ characters
from the left side of the string.

right: ‘length’ Returns a maximum of ‘length’ characters
from the right side of the string.

countFields: ‘delimiter’ Returns the number of string fields that are
divided by the given delimiter.

getField: ‘delimiter’, ‘position’ Returns the string field at the given position,
delimited by the given delimiter. If not found,

it will return null.

Examples of Usage

var: 'name' = (C String: 'Géran Toérnquist');
//example a

ar '

$name->(left: 5); //returns 'Géran'

'
';

//example b

Ib: |;

$name->(left: 0); //returns 'Goran'

'
';

//example c

cr o

$name->(right: 5); //returns 'quist’

'
';

//example d

Id: |;

$name->(right: 256); //returns 'Goran Tornquist'
'
';

//example e

er

$name->(right: 0); //returns the empty string
'
';

//example f

If: |;

var: 'address' = (C String: 'ftp://ftp.cortland.se/summit/"');
$address->(countFields: '//'); //returns 2

'
';

//example g

'gr

$address->(getField: '//', 2); //returns 'ftp.cortland.se/summit/'
'
";

C_Integer - an Replacement of the Native Integer Type

You find the custom type C_Integer in the file “ctypes.inc” that comes with this paper.

Simplifying your coding life with custom types — B78

Lasso Summit 2006 — Manual Simplifying your coding life with custom types

What is the purpose of the custom type?

Two purposes:

1. To prove the possibility of replacing the native integer, in certain cases, yet be able to fully
calculate without implicit conversions.

2. To make formats, that has been set by C_Integer->setFormat, not be reset everytime we
perform a calculation or assign a value to the integer.

Comment: There was no way I could implement this using inheritance from the native integer
type. The reason for this is possibly the optimizations done in the implementation of the member
tags of the integer type.

Member Tags

There are no special member tags that differs from the normal integer. The main feature of this
custom type is that it is not any different from an integer when it comes to calculation or the
alike. However, once a format has been set using C_Integer->setFormat, it will stick. No matter
the assignments being done to the variable that contains the object.

Examples of Usage: The native integer behavior

var: 'salary' = 1000;
$salary->(setFormat: -groupChar=' "');
//example a

'a: ' + $salary + '
';
//example b

$salary += 5;

'b: '

$salary + '
';
//example c

$salary = 2000;

'c: '

$salary + '
';

Examples of Usage: The C_Integer behavior

var: 'salary' = (C Integer: 1000);
$salary->(setFormat: -groupChar=' "');
//example a

'a: ' + $salary + '
';
//example b

$salary += 5;

'b: '

$salary + '
';

//example c

$salary = 2000;

'c: '

$salary + '
';

Epilogue

I expanded my own knowledge while researching for this paper. I had a clear and distinct idea
what I wanted to prove with the paper and the presentation. The last custom type, C_Integer,
took quite some time to realize and to work 100% the way I wanted it to. The path to fully
understanding the inheritance and overloading of callback member tags and symbols was a long
and troublesome one.

Simplifying your coding life with custom types — B79

Lasso Summit 2006 — Manual Simplifying your coding life with custom types

If I would be lazy, I'd blame either the implementation of Lasso, or the documentation for this,
but I don’t. When it comes to the inner workings of inheritance and the full operations of a
cascading member tag, it is not an easy subject.

One of the reasons for my troubles was the implicit conversion of data, which made me suffer
from a infinite recursion until I finally understood how it works.

The first two examples are actually quite simple. The advanced part in them lies in
understanding how the callback member tags are working.

The third example is more of a subject for the fearless. The reason I developed that custom type
was that I was tired of keeping track of whether formatting was done or not. With this custom
type in place, I can rely on the formatting being in place when I'm converting to strings for
presentation.

Happy ctyping

/Goran

Simplifying your coding life with custom types — B80

Lasso Summit 2006 — Manual Using ImageMagick, Lasso and Passthru

Using ImageMagick, Lasso and Passthru

Eric Landmann

INTRODUCTION

Photo upload systems that "do it all" for the user are becoming increasingly common on websites.
Systems that allow a user to upload a photo and capture some additional information are used in
many types of applications. Some of these include an employee directory or staff listing, an image
bank, a blog, a members area of a chat site, a used equipment site, or a real estate listings system.

The examples provided arefor a site providing information about climbing routes. The photo
uploaded might show a picture of the climb which would be of interest to other climbers
attempting the route.

This functionality would typically be found in an administrative or user area to restrict access
from the general public. The example provided does not show any user authentication code or
scheme; this would have to be added by the coder. Below is a screenshot of the application just
before the user submits the form.

5o 6 Graphics Finder - Mozilla (&=
| @ @ Q | |% hL'tp:ffl2?.D.U.lfuplnad_images.lasscé:.'%l
wl TTop Up MiFirst! 4 Proviode BoNext M Last EJDocument FiMora

1®ndmann

Image Upload System

e -
InterActive

Upload Images

Area | Kama Bay Ll
Crag | kama Bay Cliffs Bd|
Route |Asymmetric Warfare L‘

Image Title

Fsymmetric Warfare

att Giambrone on the first ascent
PUELERELIL o f Rsymmetric Warfare, a fearsome
crack with "not much ice" located
at kilometer 4 at Kama Bay.

fNick Bud
-
Image to Upload !Asymmetric_Warfare_MG.ﬂ Browse... I

Upload |
[=CE S Rez A DTE RS
Why do it this way?
Lasso comes bundled with ImageMagick, a very useful suite of utilities that can manipulate
images in many ways. Lasso ties into ImageMagick through the use of Lasso's Image tags.

Using ImageMagick, Lasso and Passthru — B81

Lasso Summit 2006 — Manual Using ImageMagick, Lasso and Passthru

Using Lasso's builtin Image tags, you can resize an image, get info on an image, crop images,
sharpen, and do many other things. Our solution does not use all of this functionality. Instead,
we use PassThru, a plugin that issues Terminalstyle commands, to pass commands directly to
ImageMagick. It is a fair question why we would use this method instead of using the builtin
Lasso image tags. Here are some reasons:

1. Speed — Working with ImageMagick directly is faster than using Lasso's tags

2. Error Reporting — We can capture more descriptive errors directly from ImageMagick

3. Flexibility

— by using a separate install of ImageMagick, you can take advantage of new releases

— You can tailor ImageMagick commands to specific image situations

— Upload and image directories are easily tailorable
FEATURES OF THIS APPLICATION

Requires the user to make selections from dropdowns to be able to upload an image. This
process identifies a record in the database to which the photo will be related. Cleans up
troublesome filenames and creates a unique filename for the uploaded source image file.

Creates three versions of the image, with modifiable sizes.

Created images are placed in three separate folders, allowing one database entry for the
filename.

Folder paths called in HTML determine which size photo is accessed; the filename is the
same.

This version works with .jpg files, but is easily modifiable to include other file formats by
calling the appropriate ImageMagick convert command.

Employs a siteconfig file, which has sitewide settings and makes moving code from one site
to another relatively easy.

Original file can be archived if desired (set in the siteconfig file).

The upload page is selfposting (less code maintenance).
SOFTWARE USED

Lasso — To communicate with the webserver, databases, and do various utility tasks
ImageMagick — To analyze images and create derivative images. We are using the Lasso installed
version in this example for ease of use, but an external installation certainly could easily be used.

PassThru — Aplugin that communicates between Lasso and the Terminal to pass commands
through to and receive message from the operating system. It is a commercial addon. See the
"References" section for where to get PassThru.

MySQL — To store the record information for the routes and images.

OPERATING PRINCIPLES

Here is how this application operates. The user is presented with a form with a dropdown dialog.
When an "Area" is selected, the form selfposts, a database lookup is performed, and a "Crag"

Using ImageMagick, Lasso and Passthru — B82

Lasso Summit 2006 — Manual Using ImageMagick, Lasso and Passthru

dropdown list is presented. When a crag is selected, the form selfposts again, and a list of climbs
are presented. When a climb is selected, the form selfposts again, and presents a form to fill out
an image title, caption, credits, and a browse button to select the photo to upload. After the photo
is selected and submit, the form selfposts one final time.

If all the form submissions pass the tests, the process_uploads.inc file does all the heavy lifting.
This include file contains all the code to clean up the submitted filename of improper characters,
create a unique new filename for the uploaded file, create the three sizes of thumbnails (called
large, small, and thumb images) stored in their respective folders, make the database entry,

and take care of file maintenance. Here is a code snippet that produces the large image (line

128 of process_uploads.inc). It also checks whether the image is wider or taller, and issues the
appropriate ImageMagick command:

// <L L L LKL L L L LKL L L L L L LKL L L L L LKL L L L L L L L L L L L <L << << <<

//

Make Large version

// <L L L L LKL L L L LKL L L L L L LKL L L L L L L L L L L L L L L L L <L << << << << <<

If:(#Height < #largeheight) || (#Width < #largewidth);

Local('ResizeTest') = 'Image Height or Width LESS THAN large image, make large
version, no resize
\r';

Local:'MakeLarge' = ($svPathToIM 'convert -density 72x72 -colorspace RGB "
($svWebserverRoot) (#ThisFilePath) '" "' (#ULPathImagelLargeOUT) '"');

Else;

Local('ResizeTest') = 'Image Height or Width GREATER THAN large image, make
large version, resize 600x600
\r';

Local:'MakeLarge' = ($svPathToIM 'convert -density 72x72 -colorspace RGB
-resize ' (#largewidth) 'x' (#largeHeight) ' "' ($svWebserverRoot) (#ThisFilePath)
tomt (#ULPathImagelLargeOUT) '"');

/1If;

Immediately after this, and sprinkled throughout the code are various places that display
information when debugging is on. This particular bit of code displays the value of the variables
ResizeTest and MakeLarge:

If: $svDebug == 'Y';

'<p class="debug">\n';

'141: ResizeTest = ' (#ResizeTest) '
\r';

'141: MakelLarge = ' (#MakelLarge) '
\r';

'</p>\n';

/1f;

Immediately after this (at line 146), the PassThru command is run, and the output of this
command is captured in the variable "converting":

// Run the PassThru command to convert the file
Local('converting') = PassThru(#MakeLarge, -username=$svPassThruUsername, -password=
$svPassThruPassword);

At this point, the command has been passed to ImageMagick, and it should be doing its thing. If
you are watching the server when executing this, you should see the newlycreated files appear in
the image folders under /site/images.

Using ImageMagick, Lasso and Passthru — B83

Lasso Summit 2006 — Manual Using ImageMagick, Lasso and Passthru

FILE STRUCTURE
SQL Files

A filecalled beta_content_demo.sql contains the structure and data of the tables used in this
application. To use this, create a table in MySQL called "beta_content_demo", and run the beta_
content_demo.sql file. Tt will create the four tables listed below and populate them with test data.
Database and Table Descriptions

beta_content contains information for the climbs

beta_crag contains information about the crags (climbing areas)

beta_errors contains information accessed by the Show_Error tag

beta_images contains information about the uploaded images
Code Files

Files of note are as follows:

upload_images.lasso — The entry point for this application
siteconfig.lasso — controls site and serverspecific specific information

process_uploads.inc — does the actual image file creation, communicating with
ImageMagick via PassThru; also creates the database entry and handles error and message
generation

vardumpuniversal.lasso — A handydandy variable dump utility that you can put
anywhere in a page to display some information about the current file and the value
of variables. It is written to not dlsplay Lasso "reserved" variables (those starting with

nn

") or siteconfig Varlables [Documents
(those starting with "s =8| #~] (Q-selection S
Used in debugging and site & Date Modified -
development. Lotai2 A
5 g Today, 8:56 AM
. . i @ upload.css Today, 8:56 AM
DIrGCtory Dlsplay . v [images Today, 1:42 PM
. . = imageuploadbanner.jpg Today, 9:10 AM
The list below shows a typical 3 v (3 farge S
image upload System directory after H # Asymmetric_Warfare_MG_Cma.jpg Today, 3:07 PM
N " . v __ed Today, 3:07 PM
one lmage (named ASYmmetrlC_ ® Asymmetric_Warfare_MG_Cma.jpg Today, 3:07 PM
Warfare_MG.jpg") has been ¥ = thu.mh . . Today, 3:07 PM
B ¥ Asymmetric_Warfare_MC_Cma.jpg Today, 3:07 PM
uploaded. The three generated N v 3 s Today, 3:14 PM
. ﬁl 1 d d @ process_uploads.inc Today, 3:14 PM
lmage €s (a arge’ medium, an _ B vardumpuniversal.lasso Today, 1:58 PM
thumb version) are each in their ¥ [masthead Today, 12:01 PM
. . @ header.inc Today, 9:13 AM
own subfolders of /site/images. The || & sieconfig.tasso Today, 3:14 PM
. . v L; Test Images Today, 3:02 PM
Orlglnal ﬁle has been renamed and & __vt'_ Asymmetric_Warfare_MG.jpg Today, 3:01 PM
moved to upload processed_ i |®| Brittney JPG October 22, 2005, 9:58 AM
- E @ Deception Chimney.jpg February 12, 2003, 2:27 PM
'g Garuda.|FG Dctober 22, 2005, 11:34 AM
R Garuda.tif Today, 2:10 PM
" Horse by Brahmaputra,JPG October 22, 2005, 7:16 AM
B Bl Shisha JPG October 22, 2005, 7:23 AM
| v [upload Today, 3:07 PM
@ upload_images.lasso Today, 1:46 PM
f v ['-,7 uEIDad_prucessed Today, 3:07 PM
I’E Asymmetric_Warfare_MG_Cma.jpg Today, 3:07 PM
L E) >
e 29 items, 28.53 GB available 7

Using ImageMagick, Lasso and Passthru — B84

Lasso Summit 2006 — Manual

Using ImageMagick, Lasso and Passthru

Error Checking and Display

A custom tag called "Show_Error" is
defined in the siteconfig.lasso file. It
takes several parameters and returns
a formatted table with a message.

It could be an error or it could be a
success message, depending upon the
code that is passed to the tag. The code
that is passed to the tag is typically a
fourdigit number, like "5061" which
means "Upload Successful." Below is a
typical error message displayed at the
top of the page:

This tag can easily be used with a
redirect by passing a parameter "error”
through the URL.

For example:

‘upload_images.lasso?Error="'$VvEr
ror'&0ption="'$vOption;

The error is then displayed by calling
the Show_Error tag as follows:

Show_Error:
-PosColor="'0099FF"',

806

Graphics Finder - Mozilla

@b @ @ Q | |% http://127.0.0.1/upload_images. Ia_,I ‘
Rrarhs

Tibacument ElMore

& Top ® Up [First 4 Previods B Next MiLast

- e
Image Credits
| Browse".
Upload E
|
M =0 & E£1 & | bons SR

-ErrNum=(Var:'vError'),
-NegColor="'FF0000"',

b

@ndmann

= =
Int@[_ACtNe Image Upload System

Sarry, an error occurred trylng to read a file: Posslbly no file was selected
to upload or the wrong flle type was used (try .jpg).

Upload Images

Area | Kama Bay j
Crag [Kama Bay Cliffs B
Route |Asymmetric Warfare j =

symmetric Warfare
Image Titla

att Giambrone on the first ascent
PUELLRRLULL] [0 f nsymmetric Warfare, a fearsome
crack with "not much ice" located
at kilometer 4 at Kama Bay.

-Option=(Var:'vOption'),

-BgColor="'CCCCCC;

See the tag definition in the siteconfig for info on what the parameters mean.

Using ImageMagick, Lasso and Passthru — B85

Lasso Summit 2006 — Manual Using ImageMagick, Lasso and Passthru

eon upload Info

FILE AND FOLDER PERMISSIONS " s

Kind: Folder

Lasso is very persnickety about permissions to perform file manipulations. st skeor disk asatyen

Where: AluBook Library:WebServer:

Documents:

Rather than repeat the documentation about how to do it, check the Lasso crses: eanesaay sy s 2005 930
Modified: Thursday, December 15, 2005 12

documentation regarding file tags and folder permissions. The example
files make use of a user ID and password for this purpose, set in the e

¥ Name & Extension:

siteconfig. One commonly overlooked aspect is setting folder permissions

for the enclosing folder where the graphics are stored. See screenshot P Contert index

¥ Preview:

below for example folder permissions.

DEBUGGING
This can be controlled either globally through a variable declaration at
the top of the siteconfig (by setting svDebug =Y), or can be turned on Y A g

You can Read & Write

for any page or code block. Turning debug on will allow you to see all the 4 peaas
commands sent to ImageMagick, all the database calls and variable states. el _____ B o

Access: | Read & Write

. . Group: [admin)
Debugging also calls the vardumpuniversal.lasso file. This file displays e oo
some page information, action_params that have been submit to that Ohers: (Readonly T

page, and the variable values. It is typically used at the bottom of the page.
A sample of debugging output is below:

PAGE INFO
Response_Fllepath = /upload |mages.|lasso
Referrer_URL = http://127.0.0.1/upload_Images.lasso

ACTION_PARAMS DUMP
Area = Orlent Bay

Crag = Orlent Bay
RoutelID = 6

VARIABLE DUMP

vimageTitle =

vCrag = Orlent Bay

vOption =

vimageCredits =

SQLSearchAreas = SELECT DISTINCT Crag_Area FROM beta_crag ORDER BY Crag_Area
vRoutelD = &

S5QLSearchCrags = SELECT DISTINCT Crag_Crag FROM beta_crag WHERE Crag_Area = "Orient Bay"
newparams =

vAreaSelect = Thunder Bay

SQLSearchRoutes = SELECT DISTINCT Route_Mame,lD FROM beta_content WHERE Crag="0rient
Bay" ORDER BY Route_MName

vError =

vArea = Orlent Bay

vCaption =

vProcess =

wvardumpunlversal.lasso lcaded

Using ImageMagick, Lasso and Passthru — B86

Lasso Summit 2006 — Manual Using ImageMagick, Lasso and Passthru

REFERENCES

The Lasso documentation provides examples of how to set up the file tags to allow manipulations
of the sort needed here. See Chapter 29 of the "Lasso 8 Language Guide."

PassThru

PassThru has its own reference manual (included with the software).

http://www.execuchoice.net/

ImageMagick Examples

http://www.cit.gu.edu.au/~anthony/graphics/imagick/

Lasso
http://www.omnipilot.com/

LassoTalk Archives

http://www.listsearch.com/
CREDITS

Thanks to the following Lasso coders for putting up with my learning curve, and contributing
code bits to the community and to me directly:

— Pier Kuipers for the Create Unique ID tag

— Keith Schuster for the original idea about the error tag
— Greg Willits and Bil Corry for bits of the upload code
— Steffan Cline for help with PassThru

— Chris Corwin for help with ImageMagick

— the Lasso community, for being there

Using ImageMagick, Lasso and Passthru — B87

Lasso Summit 2006 — Manual Development Tools Roundtable

Development Tools Roundtable

Tom Wiebe
Eclipse Plug-ins

Eclipse offers a wealth of plug-ins, so much so that it can be a little daunting to know what to try

and what to avoid.

MyEclipselDE offers a huge number of features for a minimal cost of $29.95 for an annual
subscription and can be an excellent way to test the waters. Most of the features within
MyEclipseIDE, however, are open source utilities that have been packaged by the developers,
Genuitec.

Many of the included features are windows only or highly focused on Java development.

Does include decent HTML, CSS, and Javascript editors. Current Windows version includes a
Javascript Debugger. SQL editor is flakey on OS X, seems to work for some, not for others (not for
me).

Good starter package for new Eclipse users, you can ignore the java features if you don’t need
them

There is a huge number of standalone plug-ins, that can accomplish just about any task you could
imagine within the Eclipse environment.

Finding Eclipse Plug-ins

The Eclipse community is so large, there are hundreds of plug-ins available and at least a few
good sites listing them

http://eclipse-plugins.2y.net/

http://eclipseplugincentral.com/

Some of my Favourites

Logfile View

Tail multiple log files directly within Eclipse. Very handy to watch LassoErrors.txt or apache logs
while you run/debug scripts within Eclipse

http://www.mimo.ch/plugin.htm

Database Tools
Eclipse SQL
Decent SQL Editor within Eclipse

http://sourceforge.net/projects/sql-editor-plug

Development Tools Roundtable — B88

Lasso Summit 2006 — Manual Development Tools Roundtable

Azzurri Clay Database Modeler

Great Database modeling tool, development seems to have slowed on it, only supports Mysql 4.0
syntax (along with a variety of other databases via JDBC) but, does work great with Eclipse 3.1
and Java 1.5

http://www.azzurri.jp/en/software/clay/index.jsp

Free (Pro version available in Japan?!?)

AnyEdit tools

Adds some handy text manipulation features to Eclipse Editors. One less reason to open another
editor. Converts tabs to spaces, html entities, capitalization in a small, simple tool. Extends
existing Eclipse editors.

http://andrei.gmxhome.de/anyedit/index.html

Source Code Management

Eclipse includes excellent CVS integration right out of the box.

CVS VersionTree offers a graphical look at your cvs repository

http://versiontree.sourceforge.net/

Subversion support provided by the Subclipse plug-in, developed by the same people who
developed subversion itself, also excellent integration

http://subclipse.tigris.org/

Plug-in for many other SCM systems (perforce, Visual Source Safe, Clearcase, etc) available at
http://Eclipse-Plugins.y2.net
HTML, XML, CSS and Javascript Editors

The Eclipse project itself provides the Web Standard Tools, which provide HTML, Javascript and
CSS editors. They offer code completion, syntax colouring, formatting and basic validation for
HTML, Javascript and CSS files. Many other tools are built upon this platform.

http://www.eclipse.org/webtools/wst/main.html

XML editors are many in number, especially for Eclipse, given it’s Java heritage and the common
use of XML configuration files by nearly every Java Framework.

I like XMLBuddy for editing XML files, unlike most, it’s simple and to the point and, pretty
much works like you’d expect a text editor to work. There’s a free version that offers basic XML
editing capabilities or, the Pro version ($ 35.00 US) adds XPath features and an XSLT editor
amongst other things. The developer is very responsive to queries as well.

Standalone Apps

This list is primarily Mac oriented but I've tried to include Java and cross platform apps where
possible, so there’ll still be something there for Windows and Linux users.

Development Tools Roundtable — B89

Lasso Summit 2006 — Manual Development Tools Roundtable

Text Editors

While Eclipse is an excellent environment, it is not primarily a Text editor. Sometimes, it’s
preferable to work in a standalone editor for expediency’s sake. As well, if you ‘just don’t like
Eclipse’ as some are bound to do, you can still use it for project management and debugging and
do your primary editing in another program by choosing the “Edit in System Editor” from the
contextual menu when opening a file. This setting is remembered on a per-file basis so, once you
open a file this way, it will always launch the system editor when you open it, until you choose to
open it in one of Eclipse’s editors (Also via Contextual menu)

BBEdit is still the trusty old standby it’s always been. My ‘go to’ editor. I find, however, that it
tends to get used less and less these days, for smaller and smaller tasks. I think this has a lot
less to do with BBEdit itself and a lot more to do with the veritable cornucopia of other editors
available now.

If you can only have 1 text editor for everything, BBEdit is still likely your best choice but many
of the other editors excel within their various specialties.

Of note, the very cool SubEthaEdit, which allows multiple users to edit the same file. It also
offers syntax colouring for LassoScript files, amongst many other languages, via Adam Randall’s
excellent LassoScript mode.

http://codingmonkeys.de/subethaedit/index.html

A recent addition to the editor pantheon is TextMate. It is an interesting product (Mac only)

that makes rather bold moves with common user interface guidelines. With its file management
features, snippets, macros and more, it approaches the features of an IDE. I have only played with
it a bit but, while it’s very different, it also felt nearly instantly familiar to me. It is a product to
watch.

http://macromates.com/

TextWrangler is the replacement for BBEdit lite and, provides a much closer experience to that of
BBEdit itself than lite ever did. Probably 80% of the functionality of BBEdit, for free! Definitely
worth checking out if you haven’t got the full version of BBEdit, Also handy to install on extra
workstations and servers, where you might want a decent GUI editor but not want to purchase
extra BBEdit licenses.

http://www.barebones.com/products/textwrangler/index.shtml

Database Tools

There is a plethora of tools available here, especially for MySQL.

From MySQL themselves come MySQL Administrator and MySQL Query Browser (both cross
platform).

MySQL Administrator provides nearly complete GUI control of a MySQL Server, virtually
eliminating the need to ever use the command line in administrating your MySQL server. Also
provides backup functions, a must have

http://www.mysql.com/products/tools/administrator/

Development Tools Roundtable — B90

Lasso Summit 2006 — Manual Development Tools Roundtable

MySQL Query Browser is used to create, execute and optimize SQL queries. It is nice, free and
cross platform. However, I find that some of the third party SQL Browsers are much nicer to use.

http://www.mysql.com/products/tools/query-browser/

Aqua Data Studio is something of a Swiss army knife of database browsers. A very well written
Java app, it runs anywhere, talks to nearly every DBMS out there and is generally very full
featured.

It is free for personal use or, $149 for commercial use.

http://www.aquafold.com/

DBVisualizer is another Java SQL editor that, like Aqua Data Studio, connects to virtually every
DBMS out there. Worth checking out just to see it’s interface, which is the best I've ever seen on a
Java app.

Has integrated charting features, very nice for quick reports.

CocoaMySQL is very popular open source MySQL interface amongst Mac users, although the
original developers seem to have stopped work on it since 2003 at this point.

http://cocoamysgl.sourceforge.net/

Development seems to have been picked up by a third party though, an example of open source
software working at it’s best.

http://www.theonline.org/cocoamysql/

YourSQL is very nice, simple, free tool to build and query your MySQL databases, a native
cocoa app under regular development, YourSQL has become my favourite tool to use in creating
databases. Its feature set is much smaller than the other tools listed here but it is just fast and
simple. Definitely worth having in your toolkit

http://yoursql.ludit.it/

PHPmyAdmin — If you need to manage a remote MySQL installation and don’t want to allow
direct access to MySQL over the network, PHPmyAdmin is the ticket. A feature rich web app for
managing MySQL.

http://www.phpmyadmin.net/home_page/index.php

Command line tools

Too many to list them all, if you are on a Mag, install DarwinPorts and browse through the
available programs. If you are on Windows, most of the unix command line tools will build and
run under Cygwin.

http://darwinports.opendarwin.org/

http://www.cygwin.com/

Development Tools Roundtable — B91

Lasso Summit 2006 — Manual Development Tools Roundtable

Summary

There are almost as many interesting development tools out there as there are developers. Given
the opportunity, I suppose most carpenters would become expert hammer makers as well. In
software, everyone can be a hammer maker.

There is no ‘Best Tool’ out there for any one task. Use what you are comfortable with. There are
general-purpose tools like Eclipse or BBEdit that work well for a variety of tasks. It is very useful
to maintain a good working knowledge of a tool like this. Often, even if there is a ‘better’ tool for
the specific task you are working on, using something like Eclipse for HTML editing eliminates
the need to learn yet another tool.

Sometimes though, a tool will provide functionality that isn’t available elsewhere, such as
SubEthaEdit, or just work so much better than the alternatives that it its worthwhile to keep
another program around for a specific type of job.

Variety is the spice of life, don’t be afraid to experiment with new tools. You never know what
might lurk around the next corner.

Development Tools Roundtable — B92

Lasso Summit 2006 — Manual How to Make Sense of your Hierarchical Content

How to make sense of your hierarchical content

Seeing the Wood for the Trees — Categories, Menus and More.

Jonathan Guthrie

In pretty much everything we do online, we're dealing with organizing content, and mostly it's
hierarchical content. Site content, menu systems, product categories and endless subcategories,
forums, examples are everywhere we look.

We can just ignore it, put physical files in folders and let the client author hard files and put them
in the right place, letting the user navigate something you hope is not broken because the client,
one of your staff, or heaven forbid, you yourself, put something in the wrong directory. That's the
first approach many of us started with, and yet once you get above just a few pages it becomes a
nightmare to maintain.

XML is a perfect example of a data model that is hierarchical in nature, but not a lot of people
store dynamic content as XML in situations where it's read from and written to frequently, and
for very valid reasons.

Relational databases are essentially flat data with relationships, and yet while creating a flexible
hierarchical data model can be challenging, using a database to store and retrieve data fits well
with the way most of us work.

Multi-table approach

A system I used in the early days of content management was to have a separate table for each
level of navigation. I had primary, secondary and tertiary nav tables, and while it made many
things drop dead easy, it was severely limited in flexibility, and I had to have an additional table
for content.

Primary Secondary Tertiary Content
ID ID ID ID
Name Name Name Page Name
Display_order Primary Primary Primary
Status Display_order Secondary (optional) |Secondary
Status Display_order Tertiary
Status Content
Status

It's a workable system, if limited. It has the advantage of being simple to understand, but laden
with snafus such as...
"Can | have another level in my menus please"

"Sorry, that's all you get" became a frequent story during deployment of new sites, and we often
justified it successfully with "Best Practice Guidelines" and all that garbage. Then again Best

How to Make Sense of your Hierarchical Content — B93

Lasso Summit 2006 — Manual How to Make Sense of your Hierarchical Content

Practice is only Best Practice as long as you have need of it, or no-one else has developed a better
practice.

Getting the data out

To generate the menus or list of categories, you can either nest your queries (inlines) or try
the one-hit SQL join. Either way gets ugly, and as much as it pains me to admit, the nesting of
queries/inlines is often the only way to truly control sense of place etc.

Should | be seeing this?

It's wise in any CMS or product catalogue to allow content to be worked on while not actively
viewable by Joe Average, so you need a status flag. However unless you join your SQL to ascertain
the status of the content, you have to store status in the nav tables. That gets painful to maintain,
and the entire situation can escalate out of control.

Data Integrity (Referential)

If you have a page that's attached to a tertiary nav row, what happens if the tertiary row's deleted?
You get an orphaned content row. It makes your job as a developer harder because at every step
you have to ensure the integrity of multiple table's data, and there's no easy way to lock that down
on the database side.

The Adjacency Model

There are quite a few other variations that rely on multiple tables and on single tables, but we're
going to focus on just 2 more. The easier of the two to understand and hence the more popular
one is the Adjacency Model.

If you look at a typical off-license, the product catalogue might go something like this:
(abbreviated!)

Alcoholic Beverages
Beers
Wines
White Wines
Chardonnay
Oaked
Unoaked
Sauvignon Blanc
Pinot Gris
Riesling
Gewurztraminer
Viognier
Semillon
Red Wines
Champagne
Sparkling
Sweet Dessert
Ports/Sherries
Spirits
Non-Alcoholic Beverages
Snacks

Immediately you can see that the multi-table model will barf on this - we need something much
more adaptive.

How to Make Sense of your Hierarchical Content — B94

Lasso Summit 2006 — Manual How to Make Sense of your Hierarchical Content

In the adjacency model you want to store the element's immediate parent element's id. This
enables an easy inheritance reference.

Id Name Parent Status
1 Alcoholic Beverages |0 1
2 Beers 1 1
3 Wines 1 1
4 White Wines 3 1
5 Chardonnay 4 1
6 Sauvignon Blanc 4 1
7 Pinot Gris 4 1
8 Riesling 4 1
9 Gewurztraminer 4 0
10 Viognier 4 1
11 Semillon 4 1
12 Red Wines 3 1
13 Champagne 3 1
14 Sparkling 3 1
15 Sweet Dessert 3 1
16 Ports/Sherries 3 1
17 Spirits 1 1
18 Non-Alcoholic 0 1
Beverages
19 Snacks 0 1
20 Oaked 5 1
21 Unoaked 5 1

As you can see, one table handles all categories. Now you can simply have products that have
a single parent reference, or if this were a CMS then your body content, template reference etc,
could live in the row with your category. Even a custom non-alphabetical display order can be
handled neatly.

Simplicity is also one of it's strengths: one can see what the immediate parent is at a glance.

So lets look at some of the ways to work with this data. Please bear in mind that there will be
other ways to do this, an exhaustive display is outside the scope of this presentation!
Displaying the tree

When Jane Average is browsing your site, if she's not searching for the product she already knows
she wants, she often starts at the top and follows a path to the category she's interested in, so we'd
like to get the full tree from the database.

Assuming she's selected "Alcoholic Beverages":

How to Make Sense of your Hierarchical Content — B95

Lasso Summit 2006 — Manual How to Make Sense of your Hierarchical Content

SELECT cl.name AS catl, c2.name as cat2, c3.name as cat3, c4.name as catd
FROM adjacency AS cl

LEFT JOIN adjacency AS c2 ON c2.parent = cl.id

LEFT JOIN adjacency AS c3 ON c3.parent = c2.id

LEFT JOIN adjacency AS c4 ON c4.parent = c3.id

WHERE cl.id = 1;
Returns:

Catl Cat2 Cat3 Cat4
Alcoholic Beverages Beers [Null] [Null]
Alcoholic Beverages | Wines White Wines Chardonnay
Alcoholic Beverages | Wines White Wines Sauvignon Blanc
Alcoholic Beverages | Wines White Wines Pinot Gris
Alcoholic Beverages | Wines White Wines Riesling
Alcoholic Beverages | Wines White Wines Gewurztraminer
Alcoholic Beverages | Wines White Wines Viognier
Alcoholic Beverages | Wines White Wines Semillon
Alcoholic Beverages Wines Red Wines [Null]
Alcoholic Beverages | Wines Champagne [Null]
Alcoholic Beverages | Wines Sparkling [Null]
Alcoholic Beverages Wines Sweet Dessert [Null]
Alcoholic Beverages Wines Ports/Sherries [Null]
Alcoholic Beverages Spirits [Null] [Null]

Now there's a few obvious problems here:

+ it's not returning Wines as a distinct row because it has at least 1 child, hence Beers
returning and not Wines.

+ Ifyou try to do this query originating at the top of the tree you get some funky unintended
results.

* Note that the categories Oaked and Unoaked are missing from Chardonnay, they're judged
5th level and we only requested data down to 4. You have to know in advance, at the code
stage, how many levels deep the client's going to want to show Jane Average.

Around about now it's obvious the solution is Lasso. Create a recursive tag that simply calls itself
until the whole tree's assembled.

For example:

define type('adjacency',-priority="'replace',-namespace="'demo ');
define tag('drill', -required='id',-optional='level');
local('out' = string);
inline(
-database="'summitDemo’,
-SQL='SELECT * FROM adjacency WHERE parent = '#id";');
records;

#out += #level'. '(field('name'))'<br \>';
#out += demo_adjacency->(drill(

How to Make Sense of your Hierarchical Content — B96

Lasso Summit 2006 — Manual How to Make Sense of your Hierarchical Content

-id=(field('id')),
-level=#level+l));
/records;
/inline;
return(@#out);
/define tag;
/define type;
// action and output the above tag
demo_adjacency->(drill(-id=0,-level=0));

So you could in theory do that from any point in the tree and get all siblings and children. You
could also build in a depth limiter which would stop it crawling more than 2 levels deep so that
you only returned what was appropriate for a shallow top level menu system.

Difficulties with the Adjacency Model

Where the adjacency model falls down is that you have to build in exactly how you want to
present it into the recursive presentation tag, unless you want to make it into a nested array but
when you think about it if you do that you're no further ahead at all.

Referential integrity is not easily taken care of unless once again you do these checks in lasso. It
would be all too easy to accidentally orphan nodes, however if that does happen, it's a piece of
cake to fix by a bit of manually editing.

My main objection to this model is that it forces us to use a recursive approach. Not only is it
slow, but it will be prone to getting bogged down with extremely large data sets, as I found out
with a certain scientific research application.

The Nested Set Model

The previous examples are so simple (easy to understand) because they're either constrained or
linear. However rather than conceptualizing data as linear objects, think of hierarchical data as
groups, or nested sets. A group that is not fully contained in a parent group might need to be re-
classified.

Alcoholic
Beverages

White Wines

creronmey
Sauvignon Blanc

Ports/Sherries

How to Make Sense of your Hierarchical Content — B97

Lasso Summit 2006 — Manual How to Make Sense of your Hierarchical Content

So what we need to do is work out a way to represent these groups, or sets. If we represent this
data in a tree diagram, to quote Mike Hillyer in an article on mysql.com, "When working with

a tree, we work from left to right, one layer at a time, descending to each node's children before
assigning a right-hand number and moving on to the right. This approach is called the modified

preorder tree traversal algorithm."
1 l Alcoholic Beverages l 26
| o s 4| Wines |23 2425
[[

5 16 19 0
White Wines 17 Red Wines 18 Champagne 21 Sparkling 22

6| Chardonnay [11 12 Sauwignon fy5 Riesing [15
Blanc

7 Oaked 8 9 Unoaked 10

[l

-

About now I feel I need to offer up a warning: This method requires MySQL 4.1 (or a datasource
that utilizes subqueries and variables) and a clear, sober head. Some of what I am presenting
here is very close to the first major article I absorbed on the subject and I make no apologies
for similarities... however I will be providing LP8-specific examples that are in use IRL. The

full article by Mike Hillyer can be found at http://dev.mysql.com/tech-resources/articles/
hierarchical-data.html

The database would look something like this:

CREATE TABLE ‘nestedset’ (
*id® int(11) NOT NULL auto_increment,
‘name’ varchar(64) collate utf8 bin NOT NULL default '',
*1ft° int(11) NOT NULL default '0',
‘rgt’ int(11) NOT NULL default '0',
‘status’ int(2) NOT NULL default '1',
PRIMARY KEY ('id"))
insert into ‘nestedset’ values('l','Alcoholic Beverages','1','38','1'),
('2','Beers','2','3','1"),
'3','Wines','4','35','1"),
'4','White Wines','5','24','1"),
'5','Chardonnay','6','11','1"),
'6','Sauvignon Blanc','12','13','1"),
'7','Pinot Gris','14','15','1"),
'8','Riesling','16','17"','1"),
'9','Gewurztraminer','18','19','1"),
'10','Viognier','20','21','1"),
'11','Semillon','22','23",'1"),
'12','Red Wines','25','26','1"),
'13','Champagne’','27','28','1"),
'14','Sparkling','29','30','1"),
'15','Sweet Dessert','31','32','1"),
'16','Ports/Sherries','33",'34','1"),

(
(
(
(
(
(
(
(
(
(
(
(
(
(
('17','Spirits','36','37','1"),

How to Make Sense of your Hierarchical Content — B98

Lasso Summit 2006 — Manual How to Make Sense of your Hierarchical Content

('18','Non-Alcoholic Beverages','39','40','1"),
('19','Snacks','41','42','1"),
('20','0aked','7','8','1"),
('21','Unoaked','9','10",'1");

Note ids 20 and 21, they belong inside Chardonnay, and the Ift and rgt values of Unoaked and
Oaked neatly fit inside Chardonnay's Ift and rgt.

Selecting the ordered data, all the data is returned ordered.

SELECT node.id, node.name, node.lft, node.rgt
FROM nestedset AS node

WHERE node.status =1

ORDER BY node.lft;

In multi-table and adjacency models the path root through child has to be a known maximum
depth. In the Nested Set model it's not required.

SELECT parent.id, parent.name

FROM nestedset AS node,nestedset AS parent

WHERE node.lft BETWEEN parent.lft AND parent.rgt AND node.id = 20
ORDER BY node.lft;

1 Alcoholic Beverages

3 Wines

4 White Wines

5 Chardonnay

20 Oaked

Remember the adjacency model and our nested cTag that burrowed though the hierarchy,
returning a "formatted” string, nested and with depth? We're about to annihilate it with one foul

query.

SELECT node.id, node.name, (COUNT(parent.name) - 1) AS depth
FROM nestedset AS node, nestedset AS parent

WHERE node.lft BETWEEN parent.lft AND parent.rgt

GROUP BY node.name

ORDER BY node.lft;

How to Make Sense of your Hierarchical Content — B99

Lasso Summit 2006 — Manual

How to Make Sense of your Hierarchical Content

ID Name Depth
1 Alcoholic Beverages 0
2 Beers 1
3 Wines 1
4 White Wines 2
5 Chardonnay 3
20 Oaked 4
21 Unoaked 4
Sauvignon Blanc 3
Pinot Gris 3
Riesling 3
9 Gewurztraminer 3
10 Viognier 3
11 Semillon 3
12 Red Wines 2
13 Champagne 2
14 Sparkling 2
15 Sweet Dessert 2
16 Ports/Sherries 2
17 Spirits 1
18 Non-Alcoholic Beverages 0
19 Snacks 0

Yeah I know this is supposed to be a lasso paper, but imagine what we can do when the hard

part's taken care of in SQL and we can concentrate on writing code rather than untying the knots

we've tied ourselves in with recursive tags and so on!

Tying this in with Lasso

Adding a new node

It's relatively easy to create new nodes in multi-table and adjacency models, but it's more complex
in the nested set model. Fortunately the hard work has been done by those with higher IQ's, and
I've adapted some of these to cTags.

So we want to get the right value of the item we're inserting AFTER, and shuffle those rows to the
RIGHT up by 2 to make way for the new row, then inserting the new row with appropriate 1ft and

rgt values. Simple once you get used to it!

define tag('addSibling’,
-Required='cattable’,
-Required="txt"',
-Optional='othersmap"',
-Required="id’,
-Description='Adds entry after another child, same level

);

local('xtraFields' = string);

How to Make Sense of your Hierarchical Content — B100

Lasso Summit 2006 — Manual How to Make Sense of your Hierarchical Content

local('xtraValues' = string);
if(local defined('othersmap') && local('othersmap')->(IsA('Map')));
iterate(#othersmap,local('temp'));

#xtraFields += ', '+#temp->name;
#xtraValues += ',"'+#temp->value+'"";
/iterate;

/if;
local('sSQL' = '
LOCK TABLE '+#cattable+' WRITE;
SELECT @myRight := rgt FROM '+#cattable+' WHERE id = '+#id+'

UPDATE '+#cattable+' SET rgt
UPDATE '+#cattable+' SET 1ft

rgt + 2 WHERE rgt > @myRight;
1ft + 2 WHERE 1ft > @myRight;

INSERT INTO '+#cattable+'(name, 1lft, rgt'+#xtraFields+') VALUES("'+(encode
sql(#txt))+'", @myRight + 1, @myRight + 2'+#xtraValues+');

UNLOCK TABLES;

")
inline($gv_sql,-SQL=#sSQL);
/inline;

/define tag;

USAGE:

xs_cat->(addSibling(
-cattable='nestedset',-txt=#txt,-othersmap=(map('fl'=#f1)),-id=#id));

Points to note:

+ The table name is dynamic as we use this in situations where there may be more than one
nested set table in a given client solution.

+ "Othersmap" is a method of getting the "other" data into the row at creation time.
Remember, this is a generic tag that gets used in a number of solutions.

+ Note the use of multiple statements in the executed block.

+ The LOCK TABLES is used to ensure no other query either gets in the way or gets wrong
data.

The tag to add a nested child is almost identical, see the tag "addChild" in the cTags file supplied
for this presentation on your Lasso 2006 Summit CD.

However this time we select the LEFT value of the item we're inserting INTO, and again shuffle
those rows to the RIGHT up by 2 to make way for the new row, then inserting the new row with
appropriate 1ft and rgt values. The biggest difference is that the shuffling is relative to the LEFT of
the identified row rather than the right.

Deleting nodes

Remember "Referential Data Integrity"? We've pretty much got that sorted here too, especially
if the row also includes the content data. If you delete the navigation item, you're deleting the
content. You can also set it up so that if you're deleting a row that has child nodes, then the child
nodes are history too.

define tag('deleteNode’,
-Required="'cattable’,
-Required="id'
)i
local('sSQL" = '
LOCK TABLE '+#cattable+' WRITE;

How to Make Sense of your Hierarchical Content — B101

Lasso Summit 2006 — Manual How to Make Sense of your Hierarchical Content

SELECT @myLeft := 1ft, @myRight := rgt, @myWidth := rgt - 1ft + 1
FROM '+#cattable+'
WHERE id = '+#id+"';

DELETE FROM '+#cattable+' WHERE 1ft BETWEEN @myLeft AND @myRight;

UPDATE '+#cattable+' SET rgt
UPDATE '+#cattable+' SET 1ft

rgt - @myWidth WHERE rgt > @myRight;
1ft - @myWidth WHERE 1ft > @myRight;

UNLOCK TABLES;
")
inline($gv sql,-SQL=#sSQL);
/inline;
/define tag;
USAGE:
xs_cat->(deleteNode(-cattable="'category',-id=#id));

The actual DELETE is not on an ID but on I1ft BETWEEN the 2 values. If the node has child
nodes, they're zapped too. Dangerous, but effective. I often disallow deletion of nodes if they have
child nodes.

Returning Full Hierarchy including depth

This tag returns SQL only, due to the complexities of what we'd want to do with it - it's not
appropriate to always do the action in an inline, so this simply returns fully assembled SQL.

define_tag('fullCatsSQL',
-Required='cattable’,
-Optional="'xtraReturn’,
-Optional="'xtraWhere',
-Optional='depth
);
(!(local defined('xtraReturn'))) ? local('xtraReturn' = string);
(!(local defined('xtraWhere'))) ? local('xtraWhere' = string);
if(!(local _defined('depth')));
local('depthComp' = string);
else(integer(#depth) > 0);
local('depthComp' = 'HAVING depth <= '+#depth);
else;
local('depthComp' = string);
/if;
return("’
SELECT
node.id, node.name, (COUNT(parent.name) - 1) AS depth '+#xtraReturn+'
FROM '+#cattable+' AS node,
'+#cattable+' AS parent
WHERE node.lft BETWEEN parent.lft AND parent.rgt '+#xtraWhere+'
GROUP BY node.id
'+#depthComp+"
ORDER BY node.lft');
/define tag;

This SQL essentially is selecting all those rows in the table that conform to #xtrawhere, which
could be as simple as "node.status = 1". The order of node.lft sets us up for the order we've
specified when we numbered it all, and the #depthComp helps us restrict the query to a set
number of levels below root.

Note the "(COUNT(parent.name) - 1) AS depth". This and the join to the crawling up the tree
to count the levels, something I've seen some people doing manually each nested statement
(shudder), or caching it which is reasonably sensible if you have no alternative.

How to Make Sense of your Hierarchical Content — B102

Lasso Summit 2006 — Manual How to Make Sense of your Hierarchical Content

The xtraReturn and xtraWhere are used to broaden the usefulness. An example of an xtraReturn

is as follows:

SELECT COUNT(*)

FROM asset, category AS subc

WHERE asset.category id = subc.id

AND subc.lft BETWEEN node.lft AND node.rgt
)AS chqty,

(
SELECT COUNT(asset.name) FROM asset WHERE asset.category id = node.id
JAS qty,

(

SELECT COUNT(*) - 1

FROM category AS nnode

WHERE nnode.lft BETWEEN node.lft AND node.rgt

)AS nchild
* chgty counts the number of items belonging to that category;
* qty counts number of items belonging to that node only;
* nchild counts the number of child nodes to that category.

Once you call this tag you've got all you need to execute an inline and you've got your menu data,
category data, or forum list... you get the idea?

Returning just the subtree

OK, selecting a full nested list from the root is useful, but that SQL doesn't give us what we often
need: the subtree descending from a given node, with either absolute depth or relative depth.

This tag is slightly more involved. It requires all the normal parameters plus 'relative', which is

Boolean true or false.

define tag('subTreeSQL',
-Required="'cattable’,
-Required="id",
-Optional='depth’,
-Optional='relative’,
-Optional='xtraReturn’,

-Optional='xtraWhere'

);

(!(local defined('xtraReturn'))) ? local('xtraReturn' = string);

(!(local defined('xtraWhere'))) ? local('xtraWhere' = string);

(!(local defined('relative')) || (local('relative') == false)) ?
local('relative' = '1') | local('relative' = '(sub tree.depth + 1)');

if(!(local defined('depth')));
local('depthComp' = string);
else(integer(#depth) > 0);
local('depthComp' = 'HAVING depth <= '+#depth);
else;
local('depthComp' = string);
/if;
//(sub tree.depth + 1) - makes the depth relative to the one requested
//HAVING depth <= 1 - limits how many subs it pulls in
local('out' = 'SELECT node.id, node.name, (COUNT(parent.name) - '+#relative+') AS
depth '+#xtraReturn+'
FROM '+#cattable+' AS node,
'+#cattable+' AS parent,
'+#cattable+' AS sub parent,
(
SELECT node.name, (COUNT(parent.name) - 1) AS depth
FROM '+#cattable+' AS node,
'+#cattable+' AS parent
WHERE node.lft BETWEEN parent.lft AND parent.rgt
AND node.id = '+#id+'

How to Make Sense of your Hierarchical Content — B103

Lasso Summit 2006 — Manual How to Make Sense of your Hierarchical Content

GROUP BY node.name
ORDER BY node.lft
)AS sub tree

WHERE node.lft BETWEEN parent.lft AND parent.rgt
AND node.lft BETWEEN sub parent.lft AND sub parent.rgt
AND sub parent.name = sub tree.name '+#xtraWhere+'

GROUP BY node.id

'+#depthComp+"

ORDER BY node.lft

K

return(#out);
/define tag;

The joined 'parent’ is the same as the full tree retrieval - it gets the bubble-up, but the 'sub_
parent' join and 'sub_tree' subquery join set us up to get the nested levels. It might seem overly
complex but consider the alternative: if you try to restrict the "full tree" query to a given id as
a parent node, then it won't even return the children, it will only return that node. If we try

to restrict it using the lft and rgt values of that node (which is what we actually are doing here
anyway), it doesn't accurately retrieve the subtree.

Moving a node

Here's where I regretted ever getting into this, but by now I was hooked. Moving a node was
simply not documented properly anywhere online. It was described, but no one could really
succinctly show it. The "step by step" instructions proved that some of these guys found it
confusing as well. I admit I made copious notes trying to work the theory out on paper, and still
got it wrong - it took trial and error in a couple of places before I understood what I was actually
doing!

define tag('moveNode’,
-Required="'cattable’,
-Required="id'
)i
local('id2' = 0);
// (A)
// get immediate prior sibling
local('sSQL" = (
'SELECT node.id, node.name,
(COUNT(parent.name) - (sub tree.depth + 1)) AS depth,node.lft,node.rgt
FROM '+#cattable+' AS node,
'+#cattable+' AS parent,
'+#cattable+' AS sub parent,
(SELECT node.name, (COUNT(parent.name) - 1) AS depth
FROM '+#cattable+' AS node,
'+#cattable+' AS parent
WHERE node.lft BETWEEN parent.lft AND parent.rgt
AND node.id =
(SELECT parent.id
FROM '+#cattable+' AS node,
'+#cattable+' AS parent
WHERE node.lft BETWEEN parent.lft AND parent.rgt
AND node.id = '+#id+' AND parent.id != '+#id+'
ORDER BY parent.lft DESC LIMIT 1)
GROUP BY node.name
ORDER BY node.lft
)AS sub tree
WHERE node.lft BETWEEN parent.lft AND parent.rgt
AND node.lft BETWEEN sub parent.lft AND sub parent.rgt
AND sub parent.name = sub tree.name
GROUP BY node.id
HAVING depth =1
ORDER BY node.lft ASC;

How to Make Sense of your Hierarchical Content — B104

Lasso Summit 2006 — Manual How to Make Sense of your Hierarchical Content

));
inline($gv_sql,-SQL=#sSQL);
records;
if(integer(field('id')) != #id);
#1d2 = integer(field('id'));
else;
loop abort;
/if;
/records;
/inline;

if(#id2 == 0);
// (B)
// here we are trying to ascertain if it's a root node!
#sSQL = !
SELECT node.id, node.name, (COUNT(parent.name) - 1) AS depth
FROM '+#cattable+' AS node,
'+#cattable+' AS parent
WHERE node.lft BETWEEN parent.lft AND parent.rgt
AND node.id = '+#id+'
GROUP BY node.id
ORDER BY node.lft';
inline($gv _sql,-SQL=#sSQL);
records;
if(integer(field('depth')) == 0);
// yay, it's a root node!!!
#sSQL = !
SELECT node.id, node.name,
(COUNT(parent.name)-1) AS depth
FROM '+#cattable+' AS node,
'+#cattable+' AS parent
WHERE node.lft BETWEEN
parent.lft AND parent.rgt
GROUP BY node.id
HAVING depth = 0
ORDER BY node.lft
inline($gv sql,-SQL=#sSQL);
records;
if(integer(field('id')) != #id);
#1d2 = integer(field('id"));
else;
loop abort;
/if;
/records;
/inline;
/if;
/records;
/inline;
/if;
if(#1id2 > 0);
#sSQL = ('
LOCK TABLE '+#cattable+' WRITE;
-- 1
SELECT @myLeft := 1ft, @myRight := rgt, @myWidth := rgt - 1ft + 1 FROM '+#cattable+"
WHERE id = '+#id2+';
-- 2
UPDATE '+#cattable+' SET rgt
@myRight;
UPDATE '+#cattable+' SET rgt
UPDATE '+#cattable+' SET 1ft
-- 4
SELECT @myLeft2 := 1ft, @myRight2 := rgt, @myWidth2 := rgt - 1ft + 1 FROM
'+#cattable+' WHERE id = '+#id+';
-- 5
UPDATE '+#cattable+' SET rgt
UPDATE '+#cattable+' SET 1ft

(rgt*-1), 1ft = (1ft*-1) WHERE 1ft BETWEEN @myLeft AND

rgt - @myWidth WHERE rgt > @myRight;
1ft - @myWidth WHERE 1ft > @myRight;

rgt + @myWidth WHERE rgt > @myRight2;
1ft + @mywWidth WHERE 1ft > @myRight2;

How to Make Sense of your Hierarchical Content — B105

Lasso Summit 2006 — Manual How to Make Sense of your Hierarchical Content

- 6
SELECT @x := Uft FROM '+#cattable+' WHERE id = '+#id+';
SELECT @y := rgt FROM '+#cattable+' WHERE id = '+#id+';
-- 8

UPDATE '+#cattable+' SET rgt
UPDATE '+#cattable+' SET 1ft
-- 9
UPDATE '+#cattable+' SET rgt
UPDATE '+#cattable+' SET 1ft
UNLOCK TABLES;

")

inline($gv sql,-SQL=#sSQL);

/inline;

/if;
/define tag;

USAGE:
xs_cat->(moveNode(-cattable='category',-id=#id));

(rgt - (@y - @x + 1)) WHERE rgt < 0;
(Lft - (@Qy - @x + 1)) WHERE lft < 0;

rgt * -1 WHERE rgt < 0;
1ft * -1 WHERE 1ft < 0;

The in-SQL comments are kept there for my own reference as to the various logical steps that
they represent.

In the placeholder comments, (A) and (B) are in the lasso, --1 and so on are SQL comments.
A few notes about the process:

+ This particular tag is meant fro moving a node UPWARDS in the ORDER, not changing
level, although in this code can be adapted to move a node and all it's children from one
part of the tree to any other part of the tree with a little effort.

* (A) - In order to move a node up the order you need to know what it's immediate previous
sibling is, proved to be complex to solve in SQL, so I've captured all child nodes with depth
1 of the parent of the node we're moving (ie, siblings!). In Lasso we then set the #id2 to the
column id until we hit the moving node and we abort the loop.

+ (B) Special case is if the node we're moving is at depth 0, therefore no parents, so the (A)
code blows apart and #id2 will remain at zero.

1: We retrieve the Ift, rgt and width of the node we're exchanging "places" with.
2: Make the entire node-+children we're exchanging with, negative, as a placeholder.

3: Collapse the rest of the tree to assume the removed node's place. Note the similarity
with the delete node code.

4: Retrieve Ift, rgt, width from the node we desire to move "up”

5: Make space for the exchanged node (that which we negative-valued in step 2) by
shifting everything to the right of our moving node outwards.

6: Reselecting the Ift and rgt of the moving node, partly out of consistency with other tags
that do similar things.

7: yes you are right, there's no 7 out of respect to those very same similar tags

8 & 9: We take every Ift and rgt value that is less than zero and make them positive with the
newly calculated Ift and rgt that fit into the gap we created. I had some issues with doing
this as one step in the SQL so accepted a minute performance hit with doing this as 2 sets
of statements.

It looks hideous, but apart from ascertaining the immediate prior sibling's id, it's pure SQL.

How to Make Sense of your Hierarchical Content — B106

Lasso Summit 2006 — Manual How to Make Sense of your Hierarchical Content

Summary

I've played with a lot of data models over the years, and have looked at (and worked with) the way
some large content management systems - you know the type, that cost hundreds of thousands to
license and implement, manage their categorized data. I believe we can learn a lot from they way
these guys have missed the mark in certain areas.

Where we need to be prepared to jump through hoops is on the back end - we can afford a speed
hit there, not on the front-end. Surprisingly, I found the "big solution providers" were constantly
seeming to convince their clients it was easy to maintain, and yet in reality the front-end code
was often clumsy and slow.

The easier we can categorize our data and make it cohesive, the better we're setting ourselves and
our clients up to win. When the client wins, they will recommend us to others and so we win, as
we will have work walking in our doors.

I believe the more we talk to each other about how we're dealing with our data, hierarchical
content being just one piece in the spectrum, the more we will be able to move forward as a
community.

I hope this exposé of the way I've begun dealing with this area will open doors for many of you
and promote active discussion. One thing's for sure, we live in a constantly evolving environment
- by the time my son is earning his keep by coding, these techniques will probably be well
outdated. Collaborative development and discussion will keep us all ahead of the curve.

References

Managing Hierarchical Data in MySQL by Mike Hillyer http://dev.mysql.com/tech-
resources/articles/hierarchical-data.html

MySQL 4.1 User Variables, http://dev.mysql.com/doc/refman/4.1/en/variables.html
More links at http://xserve.co.nz/hd_links.lasso

Author: Jonathan Guthrie

xServe Limited, Wellington NZ. jono @xserve.co.nz

For Lasso Summit, Ft Lauderdale, Miami, February 2006

How to Make Sense of your Hierarchical Content — B107

Lasso Summit 2006 — Manual Structured Dynamic Content

Structured Dynamic Content Roundtable

Peter D Bethke

Overview

It is an unavoidable truth of web application development that the more complex a site is,

the more difficult it becomes to implement site-wide changes. In the "early" days of web
application development, when sites were primarily static html documents, individual pages
were coded one at a time, and often pages were added by cloning and altering a previous page.
While this was effective in creating a site with only a few pages that seldom changed, it became
increasingly inefficient in handling sites where information had to shared between pages, and
more importantly changed and updated consistently between pages. Many an html coder has
(hopefully in the past) experienced the tedium of adding the same information over and over
again to multiple web pages, or relying on "search and replace” operations while praying that the
search pattern has remained constant throughout all the pages.

With the advent of "dynamic" web applications, developers began to overcome these issues by
taking advantage of two fundemental tags that are common to Lasso and virtually all other
scripting languages - variables and included files (most often called "includes"). An included
file in LDML is called, using the [include] tag, by another file, and the contents of that file is
then essentially "folded" into the body of the first file at the point in the script (proceeding in a
linear fashion from top to bottom) where the [include] tag appears. Most importantly, if there
are variables on the "included" file that are global in scope (in other words cabable of being
recongnized as proper variables in the body of the "calling" page), they too are "folded" into the
body of the calling page, and can be used on that page for a number of purposes. The simplest
of these is of course declaring and calling simple string variables. For example, if the developer
had a file, "A", which included the variable "foo" with value "bar", and this file was called via the
[include] tag into the body of another file, "B", the developer could call (at any point below the
"point of insertion", ie the place where the [include] tag was declared) the "foo" variable and get
the value "bar". At any point after that, changing the value of "foo" in file "A" would result in the
value instantly changing in file "B".

These very simple concepts lead to the use of included files to provide, for example, "header"

and "footer" files for web sites. The "header" file might contain a common logo, and the "footer"
might contain contact information. If these files were called as dynamic includes by any number
of pages, essentially "shared" by the whole site, it greatly reduced the developer's effort when it
came time to change any of the information contained therein. Building further on this concept,
it became advantageus to create a "site configuration" file, or "siteconfig" as it is sometimes called,
in which common variables were placed. This siteconfig file was then included by all pages on the
site, and these pages could call any of the global variables declared in the siteconfig at any time,
and similarly those variables could be changed and their values would update instantly across the
site.

One important function of the [include] tag is that it allows "nesting" of files. Included files are
not limited to one "level” of inclusion -- much like a Russian Doll that has many dolls contained
within, multiple files may be "chained" or "nested" together to produce complex structures. Even

Structured Dynamic Content — B108

Lasso Summit 2006 — Manual Structured Dynamic Content

more important to the creation of dynamic systems, the global variables contained in included
files become available to files that are part of the nested structure (though always in a "top-down"
fashion, as discussed earlier).

The combination of the "nesting" function of included files and the fact that the file path specified
by the [include] tag can itself be a variable, enabled the creation of Structural Methodologies
such as the Corral Method. Corral had the distinction of being the first Lasso-based structural
method proposed, but it was by no means perfect. Rather, it served the purpose of "opening a
dialogue" on the roll of structural methods at a time when a number of Lasso developers were
pursuing similar ideas. It was eclipsed soon after by systems like [Framework:] (now called
"Pageblocks") and other much more robust systems ported from other languages (like Fusefox).
A quick distinction should also be made - Corral was a Structural Method, ie a set of ideas that
produced a result, and open to broad interpretation and reinvention. This stands in contrast to a
Structural System, sometimes called an API, which is much more devoted to defining a specific
system and set of guidelines to follow. Pageblocks is a terrific example of a very mature Structural
System, as is Fusebox. Much more effort has gone into these systems to provide developers with
specific tools to enable rapid application development.

In the end, however, neither Corral or Pageblocks or Fusebox or any other of the multitude

of Structural Methods and Systems could function without the [include] or [variable] tag (or
their equivalents in other languages) and the way that they nest together to enable complex and
dynamic systems.

Structured Dynamic Content — B109

Lasso Summit 2006 — Manual Execuchoice Round Table

ExecuChoice Roundtable Discussion

Steffan Cline

This discussion is meant to be more of a question and answer session to discuss how ExecuChoice
tags can be used to assist developers needs of functionality that is not provided by Lasso out

of the box. A brief overview of some of the features in the planned release of the ExecuChoice
Lasso Summit 2006 Master Installer is listed below to provide some ideas of topics that may be
discussed.

[PassThru]

PassThru is probably the most common and widely used third party LCAPI tag which allows

a lasso user shell access on any one of the three Lasso operating platforms available. This tag

has been used for so many features that it is hard to list them all. Recent usages have been for
using Lasso to access CVS tools from the command line to manage files etc. Additionally are for
importing large files via FTP or some other means and then using a utility like stuff/unstuffy/zip
to open/compress files for various purposes.

[ShortString]

ShortString is a simple little LCAPI tag which was built to simplify the display of long blocks of
code in small areas. A demonstration is planned to demonstrate just how useful this tag will be
for everyone to use. Currently this is available for all three Lasso platforms.

[PDF xxx]

The PDF suite is the next most widely used set as it provides blazing fast shortcuts to
manipulating PDF files. Demonstrations are planned to show the difference in speed of drawing
a PDF manually using the built in Lasso tags versus using the [PDF_fromHTML] or the [PDF_
SetFieldValue] tags. In addition will be to show how a Lasso server is capable of faxing and
printing directly from the server itself.

[XLS_XXX]

Demonstrations of this tag set will show the ease of and many methods of importing and
manipulating the data within the Lasso environment. The tags have been built so that the data
can be returned in several common data types so that the data can be inserted into a table easily
or simply displayed. Software is being developed at this time to actually write out the excel files as
well.

[DOC xxx]

Discussion of this tag set will show how easy it is to extract data from this popular word
processing format to be archived in a table or saved to files. Examples will be given as to how
these tags can be used to output the data in the most popular formats as well.

Execuchoice Round Table — B110

Lasso Summit 2006 — Manual Hosted Store Round Table

HostedStore Roundtable Discussion

Brian K. Middendorf

This discussion is meant to be more of a question and answer session to discuss how HostedStore
can be used to meet the ecommerce related needs of your current and/or future clients. A brief
overview of some of the features in HostedStore is listed below to provide some ideas of topics
that may be discussed.

Extensibility

HostedStore was built to provide a base application that could be used as is or customized to
meet specific requirements. The store template and all email/html content files can be modified.
A system of hooks allows for insertion of custom code before core code is executed, while code
core is executed, or after core code is executed. In many cases, core code can be disabled and
replaced with custom code. For example, the product search script can be completely replaced
with a different method written be the developer.

Storefront

The storefront contains features that have become standard in ecommerce solutions: static
shopping cart, tax and shipping estimates in the cart, address books, wish lists, shopping lists
(prior orders that can be reordered), saved carts, sale pricing, member pricing, volume pricing,
price groups, coupons/promotions, affiliate management, product reviews, etc. Most of these
features can be enabled or disabled with a single parameter on the store configuration screen,
thereby making it easy to add features as the needs of the store and its customers grows.

Product Management

Honestly, there are just too many options to list. Multiple pricing levels options including
member, sale, volume, and price groups. Multiple attributes can be assigned, each of which can
adjust the overall product pricing as well as the inventory of other products. Inventory thresholds
can be set remove a product from publication, publish a product but not sell it, and even track
customers who would like to be notified when a product is back in stock. Purchase limits can be
set for a product to prevent hoarding. Inventory enforcement can be applied at the last moment
before checkout in case more than one customer has the last available item in their cart. Product
dependencies/restrictions can be set so that a product may only be purchased if another products
is purchased or another product from a product group is purchased.

Order Management

Orders may be assigned multiple statuses. Even down to the item level. For example, this allows
for back ordering or canceling specific items while shipping those items in stock. Items with
multiple quantities can even be separated to assign different statuses.

Affiliate Management

The affiliate system allows for payout of a fixed amount or a percentage for first time orders,
subsequent orders, first time autoship orders, and/or subsequent autoship orders. Affiliates have

Hosted Store Round Table — B111

Lasso Summit 2006 — Manual Hosted Store Round Table

the capability to login into an area of the store and view all orders for which they have been paid
or are awaiting payment.

Coupon/Promotion Management

This versatile system allows for applying discount to an order subtotal, shipping, or a specific
item. Attributes can be set that require specific dollar amounts, item counts, a specific product,
a specific customer, etc to be associated with an order before the coupon may be applied. This
allows for a powerful system which could be automated by the end developer to automate
marketing promotions by auto-sending coupons to new customers, customer who purchase
specific items, customers who have not ordered for awhile, etc.

Hosted Store Round Table — B112

{

Lasso Professional Server 8.5

the fastest, easiest way to tie any database to any website on any platform.

Lasso Professional — the next generation of building data-driven Web sites — is
simply the fastest, easiest way to tie your databases to the Web. It supports multiple
databases simultaneously, eases the sequential migration of databases and it's fully
supported on Mac, Windows®and Linux.

Advanced features for J \
advanced developers SPEGIAL HFFER
The Lasso Professional 8.5 upgrade delivers INTRODUCING
new features including: Free Lasso Developer 8.5
. e Five IP connections
¢ Native data source connectors for e Fully Functional

PostgreSQL, Oracle, OpenBase,

ODBC, and more.
www.omnipilot.com

e An LJAX framework which makes
creating state of the art dynamic
Web sites easier.

lassosales @omnipilot.com
800-678-9958

¢ A free developer mode!

«,jMNIPlLQT@ LaSSO

SOFTWARE © 2006 OmniPilot Software, Inc.

	Content
	Schedule
	FlagShip Hosting Ad
	Point In Space Ad
	ExecuChoice Ad
	HostedStore Ad
	URL Design
	Dynamic Content
	Lasso Studio for Eclipse
	Custom Types
	AJAX
	Covering the Basics
	Simplifying Your Code
	ImageMagick, Lasso & Passthru
	Eclipse Plug-ins
	Hierarchical Content
	Structured Content
	Execuchoice Tags
	HostedStore Explained
	OmniPilot Ad

