
How to Make Sense of your Hierarchical Content — B93

Lasso Summit 2006 — Manual How to Make Sense of your Hierarchical Content

How to make sense of your hierarchical content

Seeing the Wood for the Trees — Categories, Menus and More.

Jonathan Guthrie

In pretty much everything we do online, we're dealing with organizing content, and mostly it's
hierarchical content. Site content, menu systems, product categories and endless subcategories,
forums, examples are everywhere we look.

We can just ignore it, put physical files in folders and let the client author hard files and put them
in the right place, letting the user navigate something you hope is not broken because the client,
one of your staff, or heaven forbid, you yourself, put something in the wrong directory. That's the
first approach many of us started with, and yet once you get above just a few pages it becomes a
nightmare to maintain.

XML is a perfect example of a data model that is hierarchical in nature, but not a lot of people
store dynamic content as XML in situations where it's read from and written to frequently, and
for very valid reasons.

Relational databases are essentially flat data with relationships, and yet while creating a flexible
hierarchical data model can be challenging, using a database to store and retrieve data fits well
with the way most of us work.

Multi-table approach

A system I used in the early days of content management was to have a separate table for each
level of navigation. I had primary, secondary and tertiary nav tables, and while it made many
things drop dead easy, it was severely limited in flexibility, and I had to have an additional table
for content.

Primary Secondary Tertiary Content

ID ID ID ID

Name Name Name Page Name

Display_order Primary Primary Primary

Status Display_order Secondary (optional) Secondary

Status Display_order Tertiary

Status Content

Status

It's a workable system, if limited. It has the advantage of being simple to understand, but laden
with snafus such as...

"Can I have another level in my menus please"

"Sorry, that's all you get" became a frequent story during deployment of new sites, and we often
justified it successfully with "Best Practice Guidelines" and all that garbage. Then again Best

How to Make Sense of your Hierarchical Content — B94

Lasso Summit 2006 — Manual How to Make Sense of your Hierarchical Content

Practice is only Best Practice as long as you have need of it, or no-one else has developed a better
practice.

Getting the data out

To generate the menus or list of categories, you can either nest your queries (inlines) or try
the one-hit SQL join. Either way gets ugly, and as much as it pains me to admit, the nesting of
queries/inlines is often the only way to truly control sense of place etc.

Should I be seeing this?

It's wise in any CMS or product catalogue to allow content to be worked on while not actively
viewable by Joe Average, so you need a status flag. However unless you join your SQL to ascertain
the status of the content, you have to store status in the nav tables. That gets painful to maintain,
and the entire situation can escalate out of control.

Data Integrity (Referential)

If you have a page that's attached to a tertiary nav row, what happens if the tertiary row's deleted?
You get an orphaned content row. It makes your job as a developer harder because at every step
you have to ensure the integrity of multiple table's data, and there's no easy way to lock that down
on the database side.

The Adjacency Model

There are quite a few other variations that rely on multiple tables and on single tables, but we're
going to focus on just 2 more. The easier of the two to understand and hence the more popular
one is the Adjacency Model.

If you look at a typical off-license, the product catalogue might go something like this:
(abbreviated!)

Alcoholic Beverages
 Beers
 Wines
 White Wines
 Chardonnay
 Oaked
 Unoaked
Sauvignon Blanc
Pinot Gris
Riesling
Gewurztraminer
Viognier
Semillon
 Red Wines
 Champagne
 Sparkling
 Sweet Dessert
 Ports/Sherries
 Spirits
Non-Alcoholic Beverages
Snacks

Immediately you can see that the multi-table model will barf on this - we need something much
more adaptive.

How to Make Sense of your Hierarchical Content — B95

Lasso Summit 2006 — Manual How to Make Sense of your Hierarchical Content

In the adjacency model you want to store the element's immediate parent element's id. This
enables an easy inheritance reference.

Id Name Parent Status

1 Alcoholic Beverages 0 1

2 Beers 1 1

3 Wines 1 1

4 White Wines 3 1

5 Chardonnay 4 1

6 Sauvignon Blanc 4 1

7 Pinot Gris 4 1

8 Riesling 4 1

9 Gewurztraminer 4 0

10 Viognier 4 1

11 Semillon 4 1

12 Red Wines 3 1

13 Champagne 3 1

14 Sparkling 3 1

15 Sweet Dessert 3 1

16 Ports/Sherries 3 1

17 Spirits 1 1

18 Non-Alcoholic
Beverages

0 1

19 Snacks 0 1

20 Oaked 5 1

21 Unoaked 5 1

As you can see, one table handles all categories. Now you can simply have products that have
a single parent reference, or if this were a CMS then your body content, template reference etc,
could live in the row with your category. Even a custom non-alphabetical display order can be
handled neatly.

Simplicity is also one of it's strengths: one can see what the immediate parent is at a glance.

So lets look at some of the ways to work with this data. Please bear in mind that there will be
other ways to do this, an exhaustive display is outside the scope of this presentation!

Displaying the tree

When Jane Average is browsing your site, if she's not searching for the product she already knows
she wants, she often starts at the top and follows a path to the category she's interested in, so we'd
like to get the full tree from the database.

Assuming she's selected "Alcoholic Beverages":

How to Make Sense of your Hierarchical Content — B96

Lasso Summit 2006 — Manual How to Make Sense of your Hierarchical Content

SELECT c1.name AS cat1, c2.name as cat2, c3.name as cat3, c4.name as cat4
FROM adjacency AS c1
 LEFT JOIN adjacency AS c2 ON c2.parent = c1.id
 LEFT JOIN adjacency AS c3 ON c3.parent = c2.id
 LEFT JOIN adjacency AS c4 ON c4.parent = c3.id
WHERE c1.id = 1;

Returns:

Cat1 Cat2 Cat3 Cat4

Alcoholic Beverages Beers [Null] [Null]

Alcoholic Beverages Wines White Wines Chardonnay

Alcoholic Beverages Wines White Wines Sauvignon Blanc

Alcoholic Beverages Wines White Wines Pinot Gris

Alcoholic Beverages Wines White Wines Riesling

Alcoholic Beverages Wines White Wines Gewurztraminer

Alcoholic Beverages Wines White Wines Viognier

Alcoholic Beverages Wines White Wines Semillon

Alcoholic Beverages Wines Red Wines [Null]

Alcoholic Beverages Wines Champagne [Null]

Alcoholic Beverages Wines Sparkling [Null]

Alcoholic Beverages Wines Sweet Dessert [Null]

Alcoholic Beverages Wines Ports/Sherries [Null]

Alcoholic Beverages Spirits [Null] [Null]

Now there's a few obvious problems here:

• it's not returning Wines as a distinct row because it has at least 1 child, hence Beers
returning and not Wines.

• If you try to do this query originating at the top of the tree you get some funky unintended
results.

• Note that the categories Oaked and Unoaked are missing from Chardonnay, they're judged
5th level and we only requested data down to 4. You have to know in advance, at the code
stage, how many levels deep the client's going to want to show Jane Average.

Around about now it's obvious the solution is Lasso. Create a recursive tag that simply calls itself
until the whole tree's assembled.

For example:

define_type('adjacency',-priority='replace',-namespace='demo_');
 define_tag('drill', -required='id',-optional='level');
 local('out' = string);
 inline(
-database='summitDemo',

-SQL='SELECT * FROM adjacency WHERE parent = '#id';');
 records;
 #out += #level'. '(field('name'))'<br \>';
 #out += demo_adjacency->(drill(

How to Make Sense of your Hierarchical Content — B97

Lasso Summit 2006 — Manual How to Make Sense of your Hierarchical Content

-id=(field('id')),
-level=#level+1));
 /records;
 /inline;
 return(@#out);
 /define_tag;
/define_type;
// action and output the above tag
demo_adjacency->(drill(-id=0,-level=0));

So you could in theory do that from any point in the tree and get all siblings and children. You
could also build in a depth limiter which would stop it crawling more than 2 levels deep so that
you only returned what was appropriate for a shallow top level menu system.

Diffi culties with the Adjacency Model

Where the adjacency model falls down is that you have to build in exactly how you want to
present it into the recursive presentation tag, unless you want to make it into a nested array but
when you think about it if you do that you're no further ahead at all.

Referential integrity is not easily taken care of unless once again you do these checks in lasso. It
would be all too easy to accidentally orphan nodes, however if that does happen, it's a piece of
cake to fi x by a bit of manually editing.

My main objection to this model is that it forces us to use a recursive approach. Not only is it
slow, but it will be prone to getting bogged down with extremely large data sets, as I found out
with a certain scientifi c research application.

The Nested Set Model

The previous examples are so simple (easy to understand) because they're either constrained or
linear. However rather than conceptualizing data as linear objects, think of hierarchical data as
groups, or nested sets. A group that is not fully contained in a parent group might need to be re-
classifi ed.

����� �������

���������

���������

�����

���������
��������� ���������

������������� ��������������

�����������

���������� ��������

���������������

How to Make Sense of your Hierarchical Content — B98

Lasso Summit 2006 — Manual How to Make Sense of your Hierarchical Content

So what we need to do is work out a way to represent these groups, or sets. If we represent this
data in a tree diagram, to quote Mike Hillyer in an article on mysql.com, "When working with
a tree, we work from left to right, one layer at a time, descending to each node's children before
assigning a right-hand number and moving on to the right. This approach is called the modifi ed
preorder tree traversal algorithm."

About now I feel I need to offer up a warning: This method requires MySQL 4.1 (or a datasource
that utilizes subqueries and variables) and a clear, sober head. Some of what I am presenting
here is very close to the fi rst major article I absorbed on the subject and I make no apologies
for similarities... however I will be providing LP8-specifi c examples that are in use IRL. The
full article by Mike Hillyer can be found at http://dev.mysql.com/tech-resources/articles/
hierarchical-data.html

The database would look something like this:

CREATE TABLE `nestedset̀ (
 `id` int(11) NOT NULL auto_increment,
 `namè varchar(64) collate utf8_bin NOT NULL default '',
 `lft̀ int(11) NOT NULL default '0',
 r̀gt̀ int(11) NOT NULL default '0',
 s̀tatus̀ int(2) NOT NULL default '1',
 PRIMARY KEY (`id`))
insert into `nestedset̀ values('1','Alcoholic Beverages','1','38','1'),
 ('2','Beers','2','3','1'),
 ('3','Wines','4','35','1'),
 ('4','White Wines','5','24','1'),
 ('5','Chardonnay','6','11','1'),
 ('6','Sauvignon Blanc','12','13','1'),
 ('7','Pinot Gris','14','15','1'),
 ('8','Riesling','16','17','1'),
 ('9','Gewurztraminer','18','19','1'),
 ('10','Viognier','20','21','1'),
 ('11','Semillon','22','23','1'),
 ('12','Red Wines','25','26','1'),
 ('13','Champagne','27','28','1'),
 ('14','Sparkling','29','30','1'),
 ('15','Sweet Dessert','31','32','1'),
 ('16','Ports/Sherries','33','34','1'),
 ('17','Spirits','36','37','1'),

�������������������

����� ������������

����������� ��������� ��������� ���������

����������
���������

�����
��������

����� �������

�

� � �

�

�

� � � ��

�� �� �� �� ��

�� ��

�� ��

�� ��

�� �� ��

��

��

How to Make Sense of your Hierarchical Content — B99

Lasso Summit 2006 — Manual How to Make Sense of your Hierarchical Content

 ('18','Non-Alcoholic Beverages','39','40','1'),
 ('19','Snacks','41','42','1'),
 ('20','Oaked','7','8','1'),
 ('21','Unoaked','9','10','1');

Note ids 20 and 21, they belong inside Chardonnay, and the lft and rgt values of Unoaked and
Oaked neatly fit inside Chardonnay's lft and rgt.

Selecting the ordered data, all the data is returned ordered.

SELECT node.id, node.name, node.lft, node.rgt
FROM nestedset AS node
WHERE node.status = 1
ORDER BY node.lft;

In multi-table and adjacency models the path root through child has to be a known maximum
depth. In the Nested Set model it's not required.

SELECT parent.id, parent.name
FROM nestedset AS node,nestedset AS parent
WHERE node.lft BETWEEN parent.lft AND parent.rgt AND node.id = 20
ORDER BY node.lft;
1 Alcoholic Beverages
3 Wines
4 White Wines
5 Chardonnay
20 Oaked

Remember the adjacency model and our nested cTag that burrowed though the hierarchy,
returning a "formatted" string, nested and with depth? We're about to annihilate it with one foul
query.

SELECT node.id, node.name, (COUNT(parent.name) - 1) AS depth
FROM nestedset AS node, nestedset AS parent
WHERE node.lft BETWEEN parent.lft AND parent.rgt
GROUP BY node.name

ORDER BY node.lft;

How to Make Sense of your Hierarchical Content — B100

Lasso Summit 2006 — Manual How to Make Sense of your Hierarchical Content

ID Name Depth

1 Alcoholic Beverages 0

2 Beers 1

3 Wines 1

4 White Wines 2

5 Chardonnay 3

20 Oaked 4

21 Unoaked 4

6 Sauvignon Blanc 3

7 Pinot Gris 3

8 Riesling 3

9 Gewurztraminer 3

10 Viognier 3

11 Semillon 3

12 Red Wines 2

13 Champagne 2

14 Sparkling 2

15 Sweet Dessert 2

16 Ports/Sherries 2

17 Spirits 1

18 Non-Alcoholic Beverages 0

19 Snacks 0

Yeah I know this is supposed to be a lasso paper, but imagine what we can do when the hard
part's taken care of in SQL and we can concentrate on writing code rather than untying the knots
we've tied ourselves in with recursive tags and so on!

Tying this in with Lasso

Adding a new node

It's relatively easy to create new nodes in multi-table and adjacency models, but it's more complex
in the nested set model. Fortunately the hard work has been done by those with higher IQ's, and
I've adapted some of these to cTags.

So we want to get the right value of the item we're inserting AFTER, and shuffle those rows to the
RIGHT up by 2 to make way for the new row, then inserting the new row with appropriate lft and
rgt values. Simple once you get used to it!

define_tag('addSibling',
 -Required='cattable',
 -Required='txt',
 -Optional='othersmap',
 -Required='id',
 -Description='Adds entry after another child, same level'
);

 local('xtraFields' = string);

How to Make Sense of your Hierarchical Content — B101

Lasso Summit 2006 — Manual How to Make Sense of your Hierarchical Content

 local('xtraValues' = string);
 if(local_defined('othersmap') && local('othersmap')->(IsA('Map')));
 iterate(#othersmap,local('temp'));
 #xtraFields += ','+#temp->name;
 #xtraValues += ',"'+#temp->value+'"';
 /iterate;
 /if;
 local('sSQL' = '
 LOCK TABLE '+#cattable+' WRITE;

 SELECT @myRight := rgt FROM '+#cattable+' WHERE id = '+#id+';

 UPDATE '+#cattable+' SET rgt = rgt + 2 WHERE rgt > @myRight;
 UPDATE '+#cattable+' SET lft = lft + 2 WHERE lft > @myRight;

 INSERT INTO '+#cattable+'(name, lft, rgt'+#xtraFields+') VALUES("'+(encode_
sql(#txt))+'", @myRight + 1, @myRight + 2'+#xtraValues+');

 UNLOCK TABLES;
 ');
 inline($gv_sql,-SQL=#sSQL);
 /inline;
/define_tag;
USAGE:
xs_cat->(addSibling(
 -cattable='nestedset',-txt=#txt,-othersmap=(map('f1'=#f1)),-id=#id));

Points to note:

• The table name is dynamic as we use this in situations where there may be more than one
nested set table in a given client solution.

• "Othersmap" is a method of getting the "other" data into the row at creation time.
Remember, this is a generic tag that gets used in a number of solutions.

• Note the use of multiple statements in the executed block.

• The LOCK TABLES is used to ensure no other query either gets in the way or gets wrong
data.

The tag to add a nested child is almost identical, see the tag "addChild" in the cTags file supplied
for this presentation on your Lasso 2006 Summit CD.

However this time we select the LEFT value of the item we're inserting INTO, and again shuffle
those rows to the RIGHT up by 2 to make way for the new row, then inserting the new row with
appropriate lft and rgt values. The biggest difference is that the shuffling is relative to the LEFT of
the identified row rather than the right.

Deleting nodes

Remember "Referential Data Integrity"? We've pretty much got that sorted here too, especially
if the row also includes the content data. If you delete the navigation item, you're deleting the
content. You can also set it up so that if you're deleting a row that has child nodes, then the child
nodes are history too.

define_tag('deleteNode',
 -Required='cattable',
 -Required='id'
);
 local('sSQL' = '
 LOCK TABLE '+#cattable+' WRITE;

How to Make Sense of your Hierarchical Content — B102

Lasso Summit 2006 — Manual How to Make Sense of your Hierarchical Content

 SELECT @myLeft := lft, @myRight := rgt, @myWidth := rgt - lft + 1
 FROM '+#cattable+'
 WHERE id = '+#id+';

 DELETE FROM '+#cattable+' WHERE lft BETWEEN @myLeft AND @myRight;

 UPDATE '+#cattable+' SET rgt = rgt - @myWidth WHERE rgt > @myRight;
 UPDATE '+#cattable+' SET lft = lft - @myWidth WHERE lft > @myRight;

 UNLOCK TABLES;
 ');
 inline($gv_sql,-SQL=#sSQL);
 /inline;
/define_tag;
USAGE:
xs_cat->(deleteNode(-cattable='category',-id=#id));

The actual DELETE is not on an ID but on lft BETWEEN the 2 values. If the node has child
nodes, they're zapped too. Dangerous, but effective. I often disallow deletion of nodes if they have
child nodes.

Returning Full Hierarchy including depth

This tag returns SQL only, due to the complexities of what we'd want to do with it - it's not
appropriate to always do the action in an inline, so this simply returns fully assembled SQL.

define_tag('fullCatSQL',
 -Required='cattable',
 -Optional='xtraReturn',
 -Optional='xtraWhere',
 -Optional='depth'
);
 (!(local_defined('xtraReturn'))) ? local('xtraReturn' = string);
 (!(local_defined('xtraWhere'))) ? local('xtraWhere' = string);
 if(!(local_defined('depth')));
 local('depthComp' = string);
 else(integer(#depth) > 0);
 local('depthComp' = 'HAVING depth <= '+#depth);
 else;
 local('depthComp' = string);
 /if;
 return('
SELECT
 node.id, node.name, (COUNT(parent.name) - 1) AS depth '+#xtraReturn+'
FROM '+#cattable+' AS node,
'+#cattable+' AS parent
WHERE node.lft BETWEEN parent.lft AND parent.rgt '+#xtraWhere+'
GROUP BY node.id
'+#depthComp+'
ORDER BY node.lft');
 /define_tag;

This SQL essentially is selecting all those rows in the table that conform to #xtrawhere, which
could be as simple as "node.status = 1". The order of node.lft sets us up for the order we've
specified when we numbered it all, and the #depthComp helps us restrict the query to a set
number of levels below root.

Note the "(COUNT(parent.name) - 1) AS depth". This and the join to the crawling up the tree
to count the levels, something I've seen some people doing manually each nested statement
(shudder), or caching it which is reasonably sensible if you have no alternative.

How to Make Sense of your Hierarchical Content — B103

Lasso Summit 2006 — Manual How to Make Sense of your Hierarchical Content

The xtraReturn and xtraWhere are used to broaden the usefulness. An example of an xtraReturn
is as follows:

 (
 SELECT COUNT(*)
 FROM asset, category AS subc
 WHERE asset.category_id = subc.id
 AND subc.lft BETWEEN node.lft AND node.rgt
)AS chqty,
 (
 SELECT COUNT(asset.name) FROM asset WHERE asset.category_id = node.id
)AS qty,
 (
 SELECT COUNT(*) - 1
 FROM category AS nnode
 WHERE nnode.lft BETWEEN node.lft AND node.rgt
)AS nchild
* chqty counts the number of items belonging to that category;
* qty counts number of items belonging to that node only;
* nchild counts the number of child nodes to that category.

Once you call this tag you've got all you need to execute an inline and you've got your menu data,
category data, or forum list... you get the idea?

Returning just the subtree

OK, selecting a full nested list from the root is useful, but that SQL doesn't give us what we often
need: the subtree descending from a given node, with either absolute depth or relative depth.

This tag is slightly more involved. It requires all the normal parameters plus 'relative', which is
Boolean true or false.

define_tag('subTreeSQL',
 -Required='cattable',
 -Required='id',
 -Optional='depth',
 -Optional='relative',
 -Optional='xtraReturn',
 -Optional='xtraWhere'
);
 (!(local_defined('xtraReturn'))) ? local('xtraReturn' = string);
 (!(local_defined('xtraWhere'))) ? local('xtraWhere' = string);
 (!(local_defined('relative')) || (local('relative') == false)) ?
 local('relative' = '1') | local('relative' = '(sub_tree.depth + 1)');
 if(!(local_defined('depth')));
 local('depthComp' = string);
 else(integer(#depth) > 0);
 local('depthComp' = 'HAVING depth <= '+#depth);
 else;
 local('depthComp' = string);
 /if;
 //(sub_tree.depth + 1) - makes the depth relative to the one requested
 //HAVING depth <= 1 - limits how many subs it pulls in
 local('out' = 'SELECT node.id, node.name, (COUNT(parent.name) - '+#relative+') AS
depth '+#xtraReturn+'
 FROM '+#cattable+' AS node,
 '+#cattable+' AS parent,
 '+#cattable+' AS sub_parent,
 (
 SELECT node.name, (COUNT(parent.name) - 1) AS depth
 FROM '+#cattable+' AS node,
 '+#cattable+' AS parent
 WHERE node.lft BETWEEN parent.lft AND parent.rgt
 AND node.id = '+#id+'

How to Make Sense of your Hierarchical Content — B104

Lasso Summit 2006 — Manual How to Make Sense of your Hierarchical Content

 GROUP BY node.name
 ORDER BY node.lft
)AS sub_tree
 WHERE node.lft BETWEEN parent.lft AND parent.rgt
 AND node.lft BETWEEN sub_parent.lft AND sub_parent.rgt
 AND sub_parent.name = sub_tree.name '+#xtraWhere+'
 GROUP BY node.id
 '+#depthComp+'
 ORDER BY node.lft
 ;');
 return(#out);
/define_tag;

The joined 'parent' is the same as the full tree retrieval - it gets the bubble-up, but the 'sub_
parent' join and 'sub_tree' subquery join set us up to get the nested levels. It might seem overly
complex but consider the alternative: if you try to restrict the "full tree" query to a given id as
a parent node, then it won't even return the children, it will only return that node. If we try
to restrict it using the lft and rgt values of that node (which is what we actually are doing here
anyway), it doesn't accurately retrieve the subtree.

Moving a node

Here's where I regretted ever getting into this, but by now I was hooked. Moving a node was
simply not documented properly anywhere online. It was described, but no one could really
succinctly show it. The "step by step" instructions proved that some of these guys found it
confusing as well. I admit I made copious notes trying to work the theory out on paper, and still
got it wrong - it took trial and error in a couple of places before I understood what I was actually
doing!

define_tag('moveNode',
 -Required='cattable',
 -Required='id'
);
 local('id2' = 0);
// (A)
 // get immediate prior sibling
 local('sSQL' = (
 'SELECT node.id, node.name,
 (COUNT(parent.name) - (sub_tree.depth + 1)) AS depth,node.lft,node.rgt
 FROM '+#cattable+' AS node,
 '+#cattable+' AS parent,
 '+#cattable+' AS sub_parent,
 (SELECT node.name, (COUNT(parent.name) - 1) AS depth
 FROM '+#cattable+' AS node,
 '+#cattable+' AS parent
 WHERE node.lft BETWEEN parent.lft AND parent.rgt
 AND node.id =
 (SELECT parent.id
 FROM '+#cattable+' AS node,
 '+#cattable+' AS parent
 WHERE node.lft BETWEEN parent.lft AND parent.rgt
 AND node.id = '+#id+' AND parent.id != '+#id+'
 ORDER BY parent.lft DESC LIMIT 1)
 GROUP BY node.name
 ORDER BY node.lft
)AS sub_tree
 WHERE node.lft BETWEEN parent.lft AND parent.rgt
 AND node.lft BETWEEN sub_parent.lft AND sub_parent.rgt
 AND sub_parent.name = sub_tree.name
 GROUP BY node.id
 HAVING depth = 1
 ORDER BY node.lft ASC;'

How to Make Sense of your Hierarchical Content — B105

Lasso Summit 2006 — Manual How to Make Sense of your Hierarchical Content

));
 inline($gv_sql,-SQL=#sSQL);
 records;
 if(integer(field('id')) != #id);
 #id2 = integer(field('id'));
 else;
 loop_abort;
 /if;
 /records;
 /inline;

 if(#id2 == 0);
// (B)
 // here we are trying to ascertain if it's a root node!
 #sSQL = '
 SELECT node.id, node.name, (COUNT(parent.name) - 1) AS depth
 FROM '+#cattable+' AS node,
 '+#cattable+' AS parent
 WHERE node.lft BETWEEN parent.lft AND parent.rgt
 AND node.id = '+#id+'
 GROUP BY node.id
 ORDER BY node.lft';
 inline($gv_sql,-SQL=#sSQL);
 records;
 if(integer(field('depth')) == 0);
 // yay, it's a root node!!!
 #sSQL = '
 SELECT node.id, node.name,
 (COUNT(parent.name)-1) AS depth
 FROM '+#cattable+' AS node,
 '+#cattable+' AS parent
 WHERE node.lft BETWEEN
 parent.lft AND parent.rgt
 GROUP BY node.id
 HAVING depth = 0
 ORDER BY node.lft
 ';
 inline($gv_sql,-SQL=#sSQL);
 records;
 if(integer(field('id')) != #id);
 #id2 = integer(field('id'));
 else;
 loop_abort;
 /if;
 /records;
 /inline;
 /if;
 /records;
 /inline;
 /if;
 if(#id2 > 0);
 #sSQL = ('
LOCK TABLE '+#cattable+' WRITE;
-- 1
SELECT @myLeft := lft, @myRight := rgt, @myWidth := rgt - lft + 1 FROM '+#cattable+'
WHERE id = '+#id2+';
-- 2
UPDATE '+#cattable+' SET rgt = (rgt*-1), lft = (lft*-1) WHERE lft BETWEEN @myLeft AND
@myRight;
-- 3
UPDATE '+#cattable+' SET rgt = rgt - @myWidth WHERE rgt > @myRight;
UPDATE '+#cattable+' SET lft = lft - @myWidth WHERE lft > @myRight;
-- 4
SELECT @myLeft2 := lft, @myRight2 := rgt, @myWidth2 := rgt - lft + 1 FROM
'+#cattable+' WHERE id = '+#id+';
-- 5
UPDATE '+#cattable+' SET rgt = rgt + @myWidth WHERE rgt > @myRight2;
UPDATE '+#cattable+' SET lft = lft + @myWidth WHERE lft > @myRight2;

How to Make Sense of your Hierarchical Content — B106

Lasso Summit 2006 — Manual How to Make Sense of your Hierarchical Content

-- 6
SELECT @x := lft FROM '+#cattable+' WHERE id = '+#id+';
SELECT @y := rgt FROM '+#cattable+' WHERE id = '+#id+';
-- 8
UPDATE '+#cattable+' SET rgt = (rgt - (@y - @x + 1)) WHERE rgt < 0;
UPDATE '+#cattable+' SET lft = (lft - (@y - @x + 1)) WHERE lft < 0;
-- 9
UPDATE '+#cattable+' SET rgt = rgt * -1 WHERE rgt < 0;
UPDATE '+#cattable+' SET lft = lft * -1 WHERE lft < 0;
UNLOCK TABLES;
 ');
 inline($gv_sql,-SQL=#sSQL);
 /inline;
 /if;
 /define_tag;
USAGE:
xs_cat->(moveNode(-cattable='category',-id=#id));

The in-SQL comments are kept there for my own reference as to the various logical steps that
they represent.

In the placeholder comments, (A) and (B) are in the lasso, --1 and so on are SQL comments.

A few notes about the process:

• This particular tag is meant fro moving a node UPWARDS in the ORDER, not changing
level, although in this code can be adapted to move a node and all it's children from one
part of the tree to any other part of the tree with a little effort.

• (A) - In order to move a node up the order you need to know what it's immediate previous
sibling is, proved to be complex to solve in SQL, so I've captured all child nodes with depth
1 of the parent of the node we're moving (ie, siblings!). In Lasso we then set the #id2 to the
column id until we hit the moving node and we abort the loop.

• (B) Special case is if the node we're moving is at depth 0, therefore no parents, so the (A)
code blows apart and #id2 will remain at zero.

 1: We retrieve the lft, rgt and width of the node we're exchanging "places" with.

 2: Make the entire node+children we're exchanging with, negative, as a placeholder.

 3: Collapse the rest of the tree to assume the removed node's place. Note the similarity
with the delete node code.

 4: Retrieve lft, rgt, width from the node we desire to move "up"

 5: Make space for the exchanged node (that which we negative-valued in step 2) by
shifting everything to the right of our moving node outwards.

 6: Reselecting the lft and rgt of the moving node, partly out of consistency with other tags
that do similar things.

 7: yes you are right, there's no 7 out of respect to those very same similar tags

8 & 9: We take every lft and rgt value that is less than zero and make them positive with the
newly calculated lft and rgt that fit into the gap we created. I had some issues with doing
this as one step in the SQL so accepted a minute performance hit with doing this as 2 sets
of statements.

It looks hideous, but apart from ascertaining the immediate prior sibling's id, it's pure SQL.

How to Make Sense of your Hierarchical Content — B107

Lasso Summit 2006 — Manual How to Make Sense of your Hierarchical Content

Summary

I've played with a lot of data models over the years, and have looked at (and worked with) the way
some large content management systems - you know the type, that cost hundreds of thousands to
license and implement, manage their categorized data. I believe we can learn a lot from they way
these guys have missed the mark in certain areas.

Where we need to be prepared to jump through hoops is on the back end - we can afford a speed
hit there, not on the front-end. Surprisingly, I found the "big solution providers" were constantly
seeming to convince their clients it was easy to maintain, and yet in reality the front-end code
was often clumsy and slow.

The easier we can categorize our data and make it cohesive, the better we're setting ourselves and
our clients up to win. When the client wins, they will recommend us to others and so we win, as
we will have work walking in our doors.

I believe the more we talk to each other about how we're dealing with our data, hierarchical
content being just one piece in the spectrum, the more we will be able to move forward as a
community.

I hope this exposé of the way I've begun dealing with this area will open doors for many of you
and promote active discussion. One thing's for sure, we live in a constantly evolving environment
- by the time my son is earning his keep by coding, these techniques will probably be well
outdated. Collaborative development and discussion will keep us all ahead of the curve.

References

Managing Hierarchical Data in MySQL by Mike Hillyer http://dev.mysql.com/tech-
resources/articles/hierarchical-data.html

MySQL 4.1 User Variables, http://dev.mysql.com/doc/refman/4.1/en/variables.html

More links at http://xserve.co.nz/hd_links.lasso

Author: Jonathan Guthrie

xServe Limited, Wellington NZ. jono@xserve.co.nz

For Lasso Summit, Ft Lauderdale, Miami, February 2006

